Unit 4 Chemical Reactions

Lesson 1: What is a Chemical Reaction and How to Identify the Five Types of Reactions

Essential Question: How are chemical reactions classified? -What are the 5 types of chemical reactions?

Questions/Vocab, etc.	Notes:
	Chemical Equation
	Shows the starting materials called and the new
	substances formed called of a chemical reaction.
	Parts of a chemical equation
	Reactants Products
	$NaCl_{(aq)} + AgNO_{3(aq)} \rightarrow AgCl_{(s)} + NaNO_{3(aq)}$
	means Solid (s) Liquid (l) Gas (g) Aqueous (aq) dissolved in water
	Translating a Word Equation into a Chemical Equation
	Word equation: Magnesium metal is <u>reacted</u> with aqueous hydrochloric acid <u>to</u>
	<u>produce</u> aqueous magnesium chloride and hydrogen gas
	Formula equation:
	++
	Writing a chemical equation
	→ You must write the correct chemical formulas or each reactant and product.
	→ Common phrases such as "and", "is mixed with", "reacts with" are replaced with a + sign.
	ightarrow Phrases such as "yield", "produces", and "forms" are replaced with a $ ightharpoonup$
	→ Remember "BrINCIHOF" to represent the 7 diatomic elements!
	→ The formulas for the 7 are as follows:
	Examples: Write a chemical equation for each
	[1] Potassium metal is reacted with calcium bromide to form potassium bromide & calcium
	[2] Copper (II) nitrate and sodium hydroxide react to form copper (II) hydroxide & sodium nitrate.

[1] Synthesis React	ions : wh	en 2 or n	nore substa	nces combine	to <mark>forn</mark>	n a single
SUBSTANCE						
Α		+	В	\rightarrow		AB
Element		+	Element	\rightarrow	C	ompound
[2] Decomposition substances; req AB				CE breaks apa	<mark>irt</mark> into	2 or more B
AB		→	^	*		5
Compound		→	Element	+		Element
[3] Single Replacem			en a <mark>more r</mark>	eactive eleme	nt repla	aces a less
reactive element in	a compo	Jona				
ВС	+	Α	\rightarrow	В	+	AC
Compound	+	Element	. →	Element	+	Compound
[4] Double Replacer	ment Per	ection: w	han tha <mark>nas</mark>	itive ions of ea	ch agu	leaus compound
replace each other	Helle Nee	action. w	nen the pos	Tuve lons of ea	icii aqu	coos compound
AB		CD	_	AD	+	СВ
Compound	Co	mpound	<i>→</i>	Compound	+	Compound
Composite				Composito		Composite
[5] Combustion:						
Reaction of an elem	ent or co	ompound	with OXY	EN to form ar	ı oxide	& heat
А	+ O ₂	→ A(O + Hea	at		
Hydrocarbon reacts	with OX	YGEN to	ALWAYS p	roduce carbor	dioxid	le, water & heat
C _x H _y	+ 0	₂ → C	O ₂ + H ₂ (O + heat		

5 Types of Chemical Reactions (WRITE IN THE EXAMPLES FROM THE NOTES)

Lesson 2: The Law of Conservation of Mass and How to Balance a Chemical Reaction

Essential Question: How do the Law of Conservation of Mass and chemical equations explain the interactions of atoms and molecules both conceptually and mathematically?

restions/ Vocab, etc.	Notes:
	Law of Conservation of Mass → Matter can neither be created nor destroyed, just changed in form. o Mass must stay constant through a change
	Mass of reactants = Mass of products
	→ Must be the same number of atoms of each element on the left and right side of the equation.
	→ To ensure that the numbers of each atom are the same, we must BALANCE the chemical equation.
	How do we Begin Balancing an Equation 1. Start by counting the atoms of each substance
	 Subscripts tell you how many atoms of an element Coefficients are small whole numbers placed in front of chemical formulas. A coefficient is multiplied by the subscripts within each compound to determine total number of atoms of the element A subscript outside of a parenthesis will multiply by all of the atoms inside the parenthesis In the example above, there are 3 molecules of water; 6 hydrogen atoms & 3 oxygen atoms
	SELF CHECK! Count the atoms in each compound. a) 2(NH ₄) ₃ PO ₄ N = H = O =
	b) 4 KC ₂ H ₃ O ₂
	c) 3 Ca(NO ₃) ₂ Ca= N= O=
	 Coefficients are added to change the number of atoms in a substance. Example 1
	CH ₄ +O ₂ →CO ₂ +H ₂ O

the en	d of the process.
HIN	T: Chunk the polyatomic ions if they are on both sides of the equation.
OH ⁻ is like H(a polyatomic ion that is sometimes "hidden" in water. H2O can be written
Examp	
2.011	H ₃ PO ₄ +Ca(OH) ₂ →Ca ₃ (PO ₄) ₂ + HOH
Examp	ple 3:
	HCl + Ca(OH)₂ → CaCl₂ + H₂O
SELF (CHECK!
a)	Li + H₂O → LiOH + H₂
b)	Fe + O₂ → Fe₂O₃
Balan	cing Tips
1.	Never start balancing by placing a 1 as a coefficient. Do it last.
2.	Try to leave H & O for last when balancing.
3.	Chunk polyatomic ions if present on both sides!
4.	Change H2O to H(OH) if the hydroxide ion(OH) is present on both sides.
5.	If there are an odd number of 1 type of atom on one side and an even number of the same atom on the other side, make the odd number atoms equal by multiplying by 2.
6.	Make sure the set of coefficients is in the simplest ratio.
7.	When finished balancing, always re-check that all your atoms are equal on both sides!
8.	In a combustion reaction, always start balancing with the C and H of the hydrocarbon. If you fail at first, place a 2 in front of the first compound.

3. When finished balancing, you can place a "1" in an empty coefficient location at

Lesson 3: Predicting Products of Synthesis and Decomposition Reactions & The Activity Series

Essential Question: What happens when chemicals react with one another?

Questions/ Vocab, etc.	Notes:
	Steps to Predicting Products of the 5 Types of Chemical Reactions
	 Identify the type of reaction. Use the reference sheet to determine which model to use. Create the products following the model. Don't forget to check the charges of any new ionic compound and format elements of BrINCIHOF correctly.
	Balance the chemical equation. Synthesis & Decomposition Reactions
	1. Synthesis: 3 models
	A. Formation of a Binary Compound: This is the only one you need to know!
	What do you do? Bring symbols together (take no subscripts) & then check charges
	A + B → AB
	Metal + Nonmetal → Binary Ionic Compound
	Example:
	K + Br₂ →
	SKIP TYPES B & C
	2. Decomposition: 6 models
	A. Binary Compound: This is the only one you need to know!
	What do you do? Break binary compound into the 2 elements that make it up ** Look for Diatomic Molecules**
	AB → A + B
	Binary Ionic Compound → metal + nonmetal
	Examples:
	CaCl₂ →
	SKIP TYPES B - F

Activity Series: chart that shows the reactivity of metals and halogens in a Single Replacement Reaction

- ✓ Elements on top of chart are more reactive than elements at the bottom
- ✓ More reactive elements can only replace less reactive elements
- ✓ Li can replace Ca; Bi cannot replace Cr.
- Special Rules: when a metal wants to replace H from water; need to look at print dealing with the temperature of the water
- ✓ There is an activity series chart for halogens as well.

SELF CHECK: Determine if the reaction will take place using the activity series chart

- K + CaCl₂ →
- Cu + Zn(OH)₂ →
- 3. Na + H₂O →
- 4. Ni + H₂O →
- Mg + HCl →

Lesson 4: Predicting Products of Single Replacement, Double Replacement and Combustion Reactions and the Use of Solubility Rules to Predict Precipitates

Essential Question: What happens when chemicals react with one another?

Questions/ Vocab, etc.	Notes:
	Single Replacement: 4 models
	** Single Replacement Requires the Use of Activity Series [Rules Below] **
	Metal-Metal Replacement:
	What do you do? Is the single metal above the other metal in the Activity Series chart?
	A + BC → AC + B Metal + ionic compound → new ionic compound + element
	YES: Replace it & then check charges of new compound. Watch out for diatomic molecules formed.
	NO: Write NR
	Li + K_2S → Li_2S + K Element + compound → compound + element
	Examples:
	Zn +Cu(NO₃)₂→

B. Active metal replacing Hydrogen from Water :

What to do? Is the single element above the H in the activity series chart?

- Look at specific rules!
- Can change H₂O to HOH

YES: Replace it & then check charges of new metal hydroxide and then add hydrogen gas (diatomic)

NO: Write NR

$$M + H_2O \rightarrow MOH + H_2$$

Element + water \rightarrow base + element

Examples:

Active metal replacing Hydrogen from an Acid:

What to do? Is the single element above the Hin the activity series chart?

Look at specific rules!

YES: Replace it & then check charges of new compound and then add hydrogen gas (diatomic)

NO: Write NR

$$M$$
 + HX \rightarrow MX + H_2
Element + acid \rightarrow compound + element

Examples:

Halide-Halide Replacement:

What to do? Is the single halogen above the other halogen in the activity series chart?

YES: Replace it & then check charges of new compound. Watch out for diatomic molecules!

NO: Write NR

D + BC
$$\rightarrow$$
 BD + C halogen + compound \rightarrow compound + halogen

Examples:
[1]Cl₂ +KBr →
[2] I_2 + NaCl \rightarrow
Solubility Rules Chart: Used to Classify substances as soluble & insoluble.
√ Found on your Reference Sheet
 ✓ Categorized by anion ✓ Soluble: substance will dissolve in water ✓ Insoluble: substance will not dissolve in water. Also known as a precipital when the insoluble substance is formed on the product side. (PP)
SELF CHECK! Determine if the following substances are soluble (S) or insoluble
1. CaCl2
2. K ₃ PO ₄
3. MgCO ₃
4. Zn(OH) ₂
5. NiSO ₄
6. AgNO ₃
4. Double Replacement: 2 models
AB + CD → CB + AD
Compound + Compound → Compound + Compound
A. Formation of a Precipitate:
What to do? Swap positive ions & then check charges on the newly forme compounds. Use the solubility rules chart to identify if there is a precipitate

 $A B + CD \rightarrow CB + AD$ compound + compound \rightarrow compound + compound

(INSOLUBLE SOLID) on the product side!

Examples:

B. Acid -Base Neutralization Reaction:

What to do? Swap positive ions & then check charges on new compounds.

$$HX + MOH \rightarrow MX + H_3O$$

Examples:

5. Combustion: 1 model

A. Burning of a Hydrocarbon:

What to do? Products are always carbon dioxide and water.

Examples:

2. ____CH₃OH + ____O₂
$$\rightarrow$$

Lesson 5: Writing Net Ionic Reactions

Essential Question: How is the phenomenon of precipitate formation explained on the atomic level?

Questions/Vocab, etc.

NET IONICS of Precipitation Reactions

Writing Net Ionic Equations

To show the details of aqueous reactions that involve ions in aqueous solutions, we use ionic equations.

- o A <u>MOLECULAR</u> Equation: the typical chemical equation you are used to writing, keeping all molecules together
- A <u>COMPLETE</u> IONIC Equation: shows all the particles in a solution as they really exist, as ions or molecules.

ident equa o A <u>NE</u>	
Example	S:
1. Molec	ular Equation: KI (aq) + AgNO _{3 (aq)} → KNO _{3 (aq)} + AgI (s)
Complet Net Ionio	
	cular Equation: 2NaOH _(aq) + CuCl _{2(aq)} → 2NaCl _(aq) + Cu(OH) _{2(s)}
Complet	
Net Ionio	
3. Molect	ular Equation: FeCl _{3(aq)} + 3NaOH _(aq) → Fe(OH) ₃₍₅₎ + 3NaCl _(aq)
Net Ionio	