<u>Le Chateller's Principle Simulation</u>								
<u>STEP ONE:</u> Analyze the four experiments below and predict the color change that would occur for each of the manipulations listed.								
Experiment	Experiment 1: Click on the <u>cobalt system</u> .							
Original cold	or BEFORE the re	eaction: PURPL	E					
Reaction wi	th the colors of th	e reactants and pro	oducts:					
$CoCl_4^{-2} + 6 H_2O \Rightarrow Co(H_2O)_6^{+2} + 4 Cl^{1-} + heat$ RED								
Note	Manipulated Change	Predict the Color Change	Observation (color change)	Reaction shifts to the Right OR shifts to the Left ?	Reactant or Product favored?			
	Heating							
	Cooling							
KCI is really K ^t and Ct ions	Adding KCl solution							
	Adding Water							
AgNO₃ is really Ag⁺ and NO₃˙ ions. The Ag⁺ ions react with the Ct ions to form a	Adding AgNO₃ solution							

Explain why the reaction shifts when increasing the temperature of the reaction:

ppt

Period _____

Experiment 2: Click on the *chromate system*.

Original color BEFORE the reaction: **ORANGE**

Reaction with the colors of the reactants and products:

$$2 \text{ CrO}_4^{-2} + 2 \text{ H}^{1+} \Rightarrow \text{ Cr}_2\text{O}_7^{-2} + \text{H}_2\text{O}$$

Note	Manipulated Change	Predict the color change	Observation (color change)	Reaction shifts to the Right OR shifts to the Left ?	Reactant or Product favored?
HCl is really H⁺ and Ct ions	Adding HCl solution				
H ⁺ ions react with the OH ions to form water	Adding NaOH solution				

Explain with the reaction stills when adding from to the reaction.								

Experiment 3: Click on the <u>nitrogen dioxide system.</u>

Original color BEFORE the reaction: YELLOWISH BROWN

Reaction with the colors of the reactants and products:

2 NO₂ \rightarrow N₂O₄ + heat

Note	Manipulated Change	Predict the Color Change	Observation (color change)	Reaction shifts to the Right OR shifts to the Left?	Reactant or Product favored?
	Heating				
	Cooling				

Explain why the reaction shifts when lowering the temperature of the reaction:						

Experiment 4: Click on the <u>iron thiocyanate system</u>.

Original color BEFORE the reaction: ORANGE

Reaction with the colors of the reactants and products:

Note	Manipulated Change	Predict the Color Change	Observation (color change)	Reaction shifts to the Right OR shifts to the Left ?	Reactant or Product favored?
	Heating				
KSCN is really K ⁺ and SCN ⁻ ions	Adding KSCN solution				
Fe(NO ₃) ₃ is really Fe ³⁺ and NO ₃ ions	Adding Fe(NO ₃) ₃ solution				

Explain why the reaction shifts when adding the from (iii) hitrate to the reaction.							

<u>STEP TWO:</u> **AFTER COMPLETING STEP ONE...** Click on the link below and you will be brought to a page with six experiments. You will only be observing the four experiments you used for your predictions in step one.

<u>CLICK HERE FOR SIMULATION</u>

To perform the listed manipulation change, use the icons to the left and right of the test tube photograph. NOTE: The original photograph that appears once you open the simulation is the color of the reaction **before** you have added the stressor/ manipulation. For each listed manipulation, consider the color changes that you observed, determine if the reaction shifted right (product favored) or shifted left (reactant favored).