2.1 Limits

Informal Definition

If the values of a function y = f(x) get closer and closer to some number L as values of x get closer and closer to a, then we say that L is the limit of f(x) as x approaches a. We write

$$\lim_{x \to a} f(x) = L$$

Example:

What happens to the y values of the function $f(x) = x^2 - 1$ as x gets closer and closer to 3?

X	2.9	2.99	2.999	3	3.001	3.01	3.1
f(x)	7.41	7.9401	7.994001	?	8.006001	8.0601	8.61

$$f(2.9) = (2.9)^2 - 1 = 7.41$$

 $f(2.99) = (2.99)^2 - 1 = 7.9401$
... Complete the rest of the table!

One sided limits

We can break this into the left and ride sides:

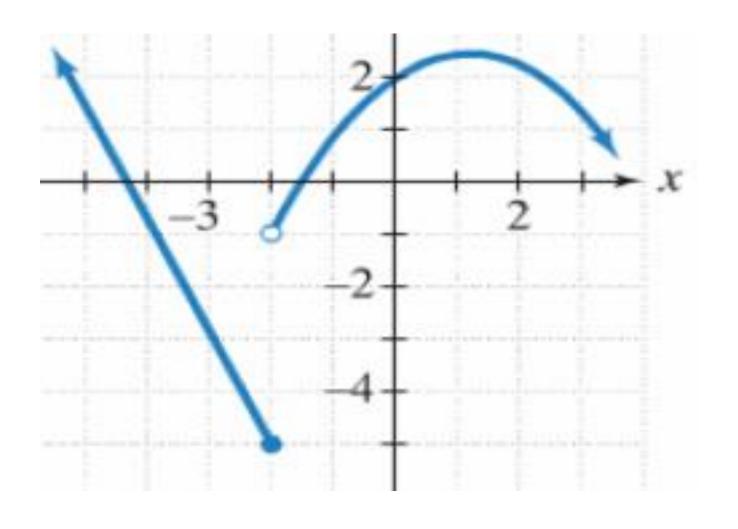
1. Left-Hand Limits: values of x that are smaller than some number a $\lim_{x\to a^-} f(x) = K$

2. **Right-Hand Limits:** values of x are larger than some number a $\lim_{x\to a^+} f(x) = M$

Visual Example

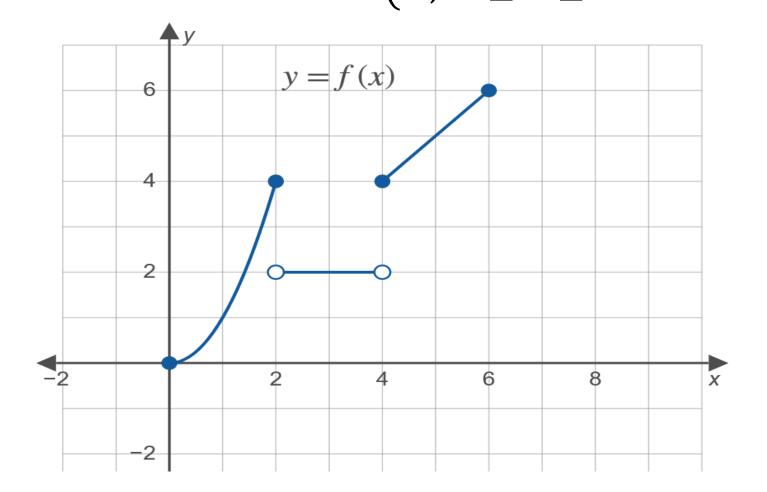
$$\lim_{x \to -2^-} f(x) =$$

$$\lim_{x \to -2^+} f(x) =$$



Example: Limits from a graph

The graph of
$$f(x) = \begin{cases} x^2, \ 0 \le x \le 2 \\ 2, \ 2 < x < 4 \text{ is shown. Find the following:} \\ x, \ 4 \le x \le 6 \end{cases}$$
 a. $\lim_{x \to 2^-} f(x)$



a.
$$\lim_{x\to 2^-} f(x)$$

b.
$$\lim_{x \to 2^+} f(x)$$

c.
$$\lim_{x\to 4^+} f(x)$$

d.
$$\lim_{x\to 0^+} f(x)$$

Limits of Polynomial Functions

To find the limit of a polynomial function, we can use the method of "direct substitution".

If p is a polynomial function and a is a real number, then

$$\lim_{x \to a^{-}} p(x) = p(a) \text{ and } \lim_{x \to a^{+}} p(x) = p(a)$$

Example:
$$\lim_{x \to 3^{-}} (x^2 + 3x - 7)$$

More Examples

Find the following limits:

$$\lim_{x\to 2^+}(x^3-5x)$$

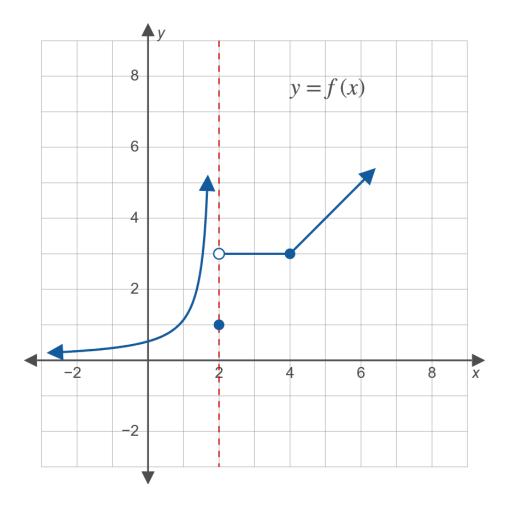
$$\lim_{x \to 0^{-}} (4x^2 - 8x + 3)$$

Infinite Limits

- 1. If f(x) increases without bound as x approaches a from the left (or from the right), then we say that f(x) approaches positive infinity, $+\infty$. We write $\lim_{x\to a^-} f(x) = +\infty$ or $\lim_{x\to a^+} f(x) = +\infty$.
- 2. If f(x) decreases without bound as x approaches a from the left (or from the right), then we say that f(x) approaches negative infinity, $-\infty$. We write $\lim_{x\to a^-} f(x) = -\infty$ or $\lim_{x\to a^+} f(x) = -\infty$.

Example:

Find the following limits:



$$a)\lim_{x\to 2^-}f(x)$$

$$b)\lim_{x\to 2^+}f(x)$$

$$c)\lim_{x\to 4^-}f(x)$$

$$d)\lim_{x\to 4^+}f(x)$$

Analytical Example:

Find the limits:

a)
$$\lim_{x \to -3^-} \left(\frac{x+5}{x+3} \right)$$

b) Find
$$\lim_{x \to -3^+} \left(\frac{x+5}{x+3} \right)$$

2.2 Limits

Existence of a Limit

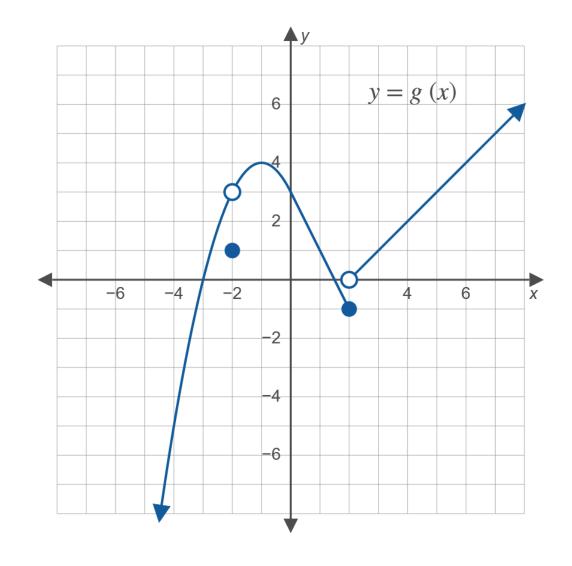
A limit exists if and only if:

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

Use the graph of y = g(x) in the figure to find

$$\lim_{x\to -2}g(x),$$

b. $\lim_{x\to 2} g(x)$,



Using Direct Substition

1.
$$\lim_{x\to 3} (-6)$$

$$\lim_{x\to 7} 4x - 3$$

$$\lim_{x \to 2} (2x^2 + 3x - 1)^2$$

Using Simplification Techniques

1.
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}$$

Homework Examples

Determine
$$\lim_{x\to 2} \left(\frac{10(x^2-4)}{x-2}\right)$$
 by using an algebraically equivalent expression.

Determine the
$$\lim_{x\to -3} \left(\frac{2x^2+5x-3}{x+3}\right)$$

Homework Examples

Given $f(x) = x^2 + 6$, find

$$\lim_{h\to 0} \left(\frac{f(7+h) - f(7)}{h} \right)$$