⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠

Text Elements

1 sample t test for means h0 : M = 8 ha : M < 8

Random : Yes, we used a spinner 10% : 10 is less than 10% of all ap stats students normal : we do not have any outliers and it isnt skewed

6.35

1.492

10

mean: 8

statistic - parameter

standard error

6.35 - 8

1.492/sqrt(10)

-1.65/1.42/sqrt(10) = -3.497

normalcdf(-99999, -3.497) = 0.002

sqrt(1.492/sqrt(10))

0.68688559957

We reject the null hypothesis, we have convincing evidence that Mrs. W’s AP Stats students, on average, get less than 8 hours of sleep because p<.5

M= parameter = mean hrs of sleep AP Stats students get

significance level = 0.05

always assume mean is null hypothesis

error

-3.5

N(0,1)

t(9)

tcdf(-99999, -3.497) = 0.0033

Choose - 1 samp t test for m h0: m = ___ & define parameter ha: m ><!= ___ Check: Random ( to generalize ) 10% ( to use standard deviation formula ) Normal ( to show shape )

Calculate t = stat - param ---------------- standard err

t

t(df)

p-value - tdf in calculator

Conclude p alpha : we reject h0 p > alpha : we accept h0

M = mean drive time for all US drivers h0: M = 51 ha: M < 51

xbar = 46.4

0.01

one sample z test for M

Random: met “random sample of 75” 10%: met 75 < .10 ( all us drivers ) normal: met 75 > 30

t = xbar - M s/ sqrt(n)

-2.12

-2.12

0

t(74)

0.0187

Embedded files

b48e0d64017fb901d37590e3f8f446f148e839cc: Pasted Image 20240301125757_780.png 1824ec7c670b41926ccbcbba2edab46e19748594: Pasted Image 20240301125757_842.png