⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠ You can decompress Drawing data with the command palette: ‘Decompress current Excalidraw file’. For more info check in plugin settings under ‘Saving’
Excalidraw Data
Text Elements
left of 1: 7 right of 1: 10 lim 1: DNE
(sqrt(x)-8)/(x-64) (sqrt(x)-8)/(x-64) * (sqrt(x)+8)/(sqrtx+8)
lim(x→ 64 sqrt(x)^2+8sqrt-8sqrt(x)-64
(x-64)(sqrt(x)+8)
lim(x→64) x-64
(x-64)(sqrt(x)+8)
1
sqrt(x)+8
1
sqrt(64)+8
1
8+8
1
16
function is approaching 1/16 on y when x is approaching 64
f(x)=(ax^n+…)/(bx^m+…)
if n < m HA is at y=0 ( lim x→ infinity = 0 ) if n == m HA is at y=a/b . lim x→ infinity = a/b if n > m, no HA, lim x→ infinity = infinity
y=0
-2/3
y=inf
0
1/2
.50x + 5000
cost/x = (.50x+5000)/x
.50 + 5000/x
lim x→ inf
(.50x+5000)/x .50/1 = .50 average cost is .50
no holes or vertical asymptotes
lim f(x) exists. cant have a piecewise function where it is jumping or breaking
← none of ts
(2^2-2-6)/(2-3) (4-2-6)/(2-3) -4/-1 4
since 2 can just be plugged in, it is continuous. our limit = f(2) and it is continuous at x=2
lim x→3
(x-3)(x+2)
(x-3)
x+2 = 3+2 = 5
discontinuous because f(3) undefined removable discontinuity tho
2 is a removable discontinuity
-4 is a non removable discontinuity
x^2+2x-8 factor it (x+4)(x-2)
(x-2)/(x+4)(x-2) 1/x+4
lim x→2 1/x+4 1/2+4 1/6
lim x→ -4 1/(x+4) 1/(-4+4) 1/0 does not exist its a VA non removable
when they cancel, thats a hole when they dont cancel, that is a vertical asymptote
when factors cancel, thats a hole
at 2 discontinuous
4-2(2) 4-4=0
2^2-1
4-1=3
not continuous, i knew it.
we just trying to make sure the limit exists, which it doesnt
non removable, jump at x=2
3(1)^2 3
1+5 6
lim x→ 1^- = lim x 1^+
-2(x)+5 makes it continuous
-18(5/3)-12
4(5/3)+7
-30-12
6.666 +7
-42
13.66666
3.07 ?
(-18x-12)/(4x+7)
-2x
-2x(x^3+7)
x/(-2x(x^3+7)) 1/(-2(x^3+7) 1/(-2(0^3+7)) 1/-14
(x^2-7x+12)/(x^2-16) (x-4)(x-3)/(x-4)(x+4) (x-3)/(x+4) (4-3)/(4+4) (1)/(8)
-19^2+38(-19)+342 361-722+342 -19
12(-19)+209 -228+209 -19
.95(100)+6.38 95+6.38=101.38
9.71(100)-869.62 971-869.62 101.38
(sqrt(x)-8)/(x-64) (sqrt(x)-8)/(sqrt(x)-8)(sqrt(x)+8) 1/(sqrt(x)+8) 1/16
(x-16)/(sqrt(x)-4) (u^2-16)/(u-4) (u-4)(u+4)/(u-4) (u+4) sqrt(x)+4 sqrt(16)+4 8
-2/10
DNE, diverges to negative infinity, so answering negative infinity
((x+4)(x-4))/((x-5)(x-4)) (x+4)/(x-5) 4+4)/(4-5) 8/-1 -8
-3(4/3)+13
-12/3 +13 -4+13 9
-16(4/3)+19
-64/3+19
-64/3+57/3
-7/3
9/(-7/3)
9*(-3/7)
-27/7
-12x^2+11x
x(-12x+11)
x/(x(-12x+11))
1/(-12x+11)
1/11
-15^2+30(-15)+216 225-450+216 -9
7(-15)+96 -105+96 -9
x^2-9 = (x+3)(x-3)
x^2-7x+12 (x-3)(x-4)/(x+3)(x-3) (x-4)/(x+3) (3-4)/(3+3) (-1)/6
19/14
numerator higher than denominator means HA is inf, or in this case, -inf cause thats what were looking for.
u-9/(u^2-81) u-9/(u-9)(u+9) 1/(u+9) 1/sqrt(x)+9 1/9+9 1/18
(x+1)/(x^2+9x) (x+1)/x(x+9)
x(x+9)=0 0(0+9)=0 -9(-9+9)=0
so 0 and -9
both non removable because they make denominator 0 which makes a va
7x^2+77x+210 7(x+5)(x+6)
x+5
7(x+6) 7(-5+6) 7(1) 7 7+6=13
-3x^2+42x-147 -3(-5^2)+42(-5)-147 -3(25)-210-147 -3(25)-357 -75-357 -432
13+432=445
-7(x-2)(x+10)/(x-2) -2 -7(x+10)-2 -7(2+10)-2 -7(12)-2 -84-2 -86
3(2)^2-60(2)+300+k = -86 3(4)-120+300+k = -86 12-120+300+k = -86 192+k = -86
192 + 86 = -k 278 = -k -278 = k
Embedded Files
7901d59f6be4c3f75ff17be1a5b6e922955755e3: page=1
d8dc8608a05d881b11b0771d62e334edee53cf69: page=2
5d9bb6ea85898d8461a02218f1bee3a491e592cb: page=3
856e2e076d5f6a8501e2815fe10c3deb7c97d08f: page=4
751d42025d08435daccc409b3ee6317028135660: page=5
6e477c326f55aaba03c204757410e9a7612562ec: page=6
5c3eab2254d649bc52ec5910411d14ac1da0ba55: page=7
8d278b487c346e2b682331d4d928d9709dddd416: page=8
c31d807169bd87e19ad0847b6f1d07fcc75316e6: page=9
aef9113dc4f538d46747e3955f5678e98d9d417c: page=10
dba982f85c2e83a5e5a0da1a9c6288de83e727bc: page=11
2124826ddb5b7a67417664e9d5c997b98acca193: page=12
7e5e4758c7c6e9e2e67f1b3b6f4c45014c1c0718: page=13
ac88e8c15f80786fa90c83ab0dd514db612b27fd: page=14
a3f468775ac59871d309cb401bea58079ebd90a3: page=15
af67bf9b42a5a3b1d623ccc022ffc144a3a764b9: page=16
da326487066d68322a6bf01370881d21d2ca8892: page=17
ff271d5a8e95c78ebcf7c99e44958f3f4d25582c: page=18
ddcc3d7ea03d59b6cc4f1aa0eb127b6eacf863d8: page=19
01230e66ee5a4ed9006c60c20d5b1b6cadc60c8f: page=20
a10bddb223a50fe9131a4ee4decc8c235a38154c: page=21
bb18334870ae0a2f8b4ada392ed591c99f765c22: page=22
3f62ecca838ca51fdeed3f016b2b53136f75e085: Pasted Image 20250902020319_776.png
37c34e7c419fe4ae24b947535803c2933f7c4922: Pasted Image 20250902021039_977.png
52a8a2ecd1bd410da306aa4c0218a93df2778c37: Pasted Image 20250902021315_467.png
a2a9d9ae477b8fc31e9e9c635d0a9570c6c2a11c: Pasted Image 20250902021552_194.png
b68dfec99529a095e40a2062927544e5d3b2fc02: Pasted Image 20250902021655_275.png
66673f02e2bacdd8a2aee3e7e25c96e7f5c99ed3: Pasted Image 20250902021749_064.png
b5a880ff2d488fa13427001c1f10c63bf7bf3bb8: Pasted Image 20250902021836_884.png
ae5fa375135391777d4e532aa4118a40f5521b32: Pasted Image 20250902021958_316.png
125d8badb11ff656bed0ffbc704b6d3ce7c9babd: Pasted Image 20250902023050_168.png
d7d6cf35411919c604ead05dfbc0bb46ee11bbf4: Pasted Image 20250902023114_116.png
1b483ea08b4bf59e3e06307eecc52ffb9fbf2130: Pasted Image 20250902023233_226.png
db0cefd453a76f3d04e4b499fb1e1621dc4dadc1: Pasted Image 20250902023253_607.png
8aba2c477b64ab339f6dd0d61d3c0d0498919192: Pasted Image 20250902023707_626.png
3d4a2222f54b34743ab794b0cae6dafa0c98847c: Pasted Image 20250902023908_328.png
9ba2a5cc13e73006eac38818369f3fb568cd9d5a: Pasted Image 20250902024816_822.png
ae472fd1b1bdc64ec3ab5cc7e7d62344d4254b41: Pasted Image 20250902024846_042.png
8d45eb859d050d2aaf1583a27274bf401900e549: Pasted Image 20250902024943_442.png
13699b37a6d7d8ddd94b8be73f8ff74cedf21f7b: Pasted Image 20250902025047_870.png
e721d6ca6b4c46f6d7159253d5af533008a7c44e: Pasted Image 20250902025221_779.png
7b19c98ae178d7448640a66a2a6e15969de0f56e: Pasted Image 20250902025253_049.png
0440c89bd12d431e2f374e695cf6bfaed1c7f7a0: Pasted Image 20250902025449_921.png
dcd0f0605a31167735e3c16e26295ba8838dcb4a: Pasted Image 20250902030003_202.png
d6356a848ec59a776cb6e4e7272998404e8a1acb: Pasted Image 20250902030332_586.png
08bce047529a18dc07226b11ada303da0f3b0880: Pasted Image 20250902034311_906.png