⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠ You can decompress Drawing data with the command palette: ‘Decompress current Excalidraw file’. For more info check in plugin settings under ‘Saving’

Excalidraw Data

Text Elements

definite integral:

(x+2)dx

2

1

find antiderivative

plug in 2 minus plug in 1

area between x =1, x=2, f(x) = x+2 and the x axis

for a function y = f(x0, nonnegative and continuous on [a,b], the area under the curve is given by

A = integral(lowa, highb) f(x) f(x) dx

fundamental theory of calculus is how to find this

generally its plugin b - plugin a

integral from 1 to 1 is 0 a to a is 0 2 to 2 is 0 etc

no area between 1 and 1.

evaluate

integral(2, 1) 2xdx

antiderivative (x^2) 2^2 - 1^2 4 - 1 3

3x^2 - 4x + 1

x^3 - 2x^2 + x

now we find at 4 and 1

4^3 - 2(4)^2 + 4 64 - 2(16) + 4 64 - 32 + 4 64 - 28 36

1^3 - 2(1)^2 + 1 1 - 2 + 1 0

36 - 0 36

(1,0) e^x dx

e

e^1 = e e^0 = 1

e - 1

for a function y = f(x) continuous on the interval a,b the average value is 1/(b-a) integral(b,a) f(x)dx

find average value of f(x) = x^2+2 on the interval 0,3

1/(3-0) * integral(3,0) (x^2+2)dx 1/(3-0) * integral(3,0) ((x^3)/3+2x) 1/3 * ((3^3)/3 + 2(3) - (0^3/3 + 2(0)) 1/3 * (9/3 + 2(3) - 0) 1/3 (15) 5

-2 / x^3 -2x^-3 antiderivative -2x^-2 / -2 x

now we solve f(4) - f(3) (4)^-2 - (3)^-2 1/4^2 - 1/3^2 1/16 - 1/9 9/144 - 16/144 -7/144

-7/x

-7x^-2 -7x^-1 / -1 7/x

f(6) - f(3)

7/6 - 7/3

7/6 - 14/6 -7/6

-7x+2 -(7/2)x^2 + 2x

f(-4) - f(-5) -(7/2)(-4)^2 + 2(-4) -7/2 * 16 - 8 -56 - 8 -64

-7/2 * -5^2 + 2(-5) -7/2 * 25 - 10 -87.5 - 10 -97.5

-64 + 97.5 33.5

5+5e^x 5x + 5e

f(5) - f(4) 5(5) + 5e^(5) 25 + 5e

5(4) + 5e^4 20 + 5e

25 + 5e^5 - 20 - 5e^4 5 + 5e^5 - 5e^4 474.075045347 474.08

3/x

3x^-1 3 * 1/x 3ln|x|

f(19) - f(16) 0.51555077078 .52

3(3x-8)^2 u = 3x-8 du = 3

u^3/3

(3x-8)^3 / 3

f(4) - f(-1) (3(4)-8)^3 / 3 (12-8)^3 / 3 4^3 / 3 64/3

(3(-1)-8)^3 / 3 (-3-8)^3 / 3 (-11)^3/3 -1331/3

64/3 - -1331/3 64/3 + 1331/3 1395/3 465

-24x(3x^2-5)^3 u = 3x^2-5 du = 6x -4 integral (3x^2-5)^3 6xdx

-4 u^3 -4 u^4/4

-4 (3x^2-5)^4 / 4 -(3x^2-5)

now solve nation

f(3) - f(1)

-(3(3)^2-5)^4 -(3(9)-5)^4 -(27-5)^4 -(22)^4 -234256

-(3(1)^2-5)^4 -(3-5)^4 -(-2)^4 -16

-234256 + 16 -234240

5x^2 + 6 5x^3/3 + 6x

f(3)-f(1) 5(3)^3/3 + 6(3) 5(3)^2 + 6(3) 5(9) + 18 45 + 18 63

5(1)^3/3 + 6(1) 5/3 + 6 23/3

63 - 23/3 189/3 - 23/3 166/3

166/3 * (1/b-a) 166/3 * (1/3-1) 166/3 * 1/2 83/3

180 - 180e^(-.2x)
180x + integrate -180e^(-.2x)

-180e^(-.2x) exponent u = -.2x du = -.2

900 e^(-.2x) * -.2dx

900 e^(-.2x)

180x + 900e^(-.2x)

f(2) - f(0)

180(2) + 900e^(-.2(2)) 360 + 900e^(-.4)

180(0) + 900e^(-.2(0)) 900e^0 900

360 - 900e^(-.4) - 900 -540 + 900e^(-.4)

(1/2) ( -540-900e^(-.4) -270 + 450e^(-.4)

1/(7x+6)

u sub, demoninator

u = 7x+6 du = 7

1/7x+6

1/7 * integrate: 7/7x+6

1/7 ln|u| 1/7ln|7x+6| 1/7ln|7(5)+6| 0.530510295243 1/7ln|7(1)+6| 0.36642133678

f(5) - f(1) = 0.164088958463

.16

4 + 2e^(-1.4x) 4x + integral 2e^(-1.4x)

2e^(-1.4x)

u = -1.4x du = -1.4

-2/1.4 e^(-1.4x) -1.4dx

4x + -2/1.4 * e^(-1.4x)

f(6)-f(3) 12.0211010136 12.02

8xe^(-x^2+7)

inside exponent denominator exponent u = -x^2 + 7 du = -2x

e^(-x^2+7) * 8xdx

need to get 8x to -2x

-4 e^(-x^-2+7) * -2xdx

-4 e^(-x^2+7)

now f(3) - f(-1)

1613.17383284 1613.17

Embedded Files

61260b64934086c7831c9c76b3c1320de1a2e6be: Pasted Image 20251208180326_224.png

0ea6a165faa8c796ebd6d85bdaa06ddfb5ea9467: Pasted Image 20251208181610_505.png

8334859879617f30432fed39bc975da5c20c8904: Pasted Image 20251208182120_585.png

da6171036bb1965d26d44a04162d8eb86703bd3f: Pasted Image 20251208182426_467.png

47520d2023eb30f6ce387729155821c03960462f: Pasted Image 20251208182847_076.png

7d2d82bc4c58d81015a7a30bc7b21648c5b3b407: Pasted Image 20251208182956_452.png

acd46da2af3c62a9d5f1fe8d952f571d4a0717b5: Pasted Image 20251208183426_662.png

5f7238993d8a40ae77a85e2fcf219d9a38579d53: Pasted Image 20251208184049_282.png

d9546b3912b154ad5d57048e6528bbfdab887ad5: Pasted Image 20251208184146_123.png

e10fc8aa6cc9786c5b02007a25570788bce94326: Pasted Image 20251208191248_126.png

f7637fe4205a2c37c857d6b4dc3dd9fc6b4c97a1: Pasted Image 20251208203222_558.png

0f49e1b5f78a6756c04ddde49bf1218e0dd405a5: Pasted Image 20251208210324_735.png

c0cd0b3a86038572ad64dc5ec56dc55ff03abd76: Pasted Image 20251208215233_437.png