⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠ You can decompress Drawing data with the command palette: ‘Decompress current Excalidraw file’. For more info check in plugin settings under ‘Saving’

Excalidraw Data

Text Elements

find f’ f(x) = 6(4e^5x + 1)^3 chain rule

f = 6x^3 g = 4e^5x + 1 f’ = 18x^2 g’ = 20e

f’(g(x)) * g’(x)

18(4e^5x+1)^2 * 20e^5x

ln(x^2) + ln(y) ln(x^2y)

ln(x) + ln(x+5)^(1/2) - ln(x-3)^(1/2) ln(x) + ln(sqrt(x+5)) - ln(sqrt(x-3)) ln(sqrt(x+5)(x)) - ln(sqrt(x-3)) ln(x(sqrt(x+5))/(sqrt(x-3)))

ln(5x) - ln(y) ln(5)+ln(x)-ln(y)

can only do the 2ln(x) + ln(6x) thing if they are being multiplied, not added

x^2+6x+5 (x+5)(x-1) ln((x+5)(x-1)) ln(x+5) + ln(x-1)

ln(2x) = ln(30) 2x = 30 x = 15

e and ln are inverses they undo eachother

x+1 = ln(30) x = ln(30) - 1 8

3x^2 + 1/x

product rule f’g + fg’

f = x^2 g = ln(x) f’ = 2x g’ = 1/x

2x(ln(x)) + x^2(1/x) 2xln(x) + x

ln x 1/x

5, 1/5

ln(5)-1

y = 1/5x + ln(5) - 1

(2x+2)/(x^2+2x+10)

ln(5x+4)^2 + ln(6x-19) 2ln(5x+4) + ln(6x-19) 2(5/5x+4) + 6/(6x-19) 10/(5x+4) + 6/(6x-19)

quotient rule (f’g - fg’) / g^2 f = 2ln(x) g = 18x^3 f’ = 21/x g’ = 54x^2 ((21/x)(18x^3) - 2ln(x)(54x^2))/(18x^3)^2 (36x^2 - 108x^2ln(x))/(324x^6) (36x^2(1-3ln(x)))/(324x^6) (1-3ln(x)) / 9x^4

product rule f’g + fg’ f = 14x^5 g = ln(20x^3-10x^2) f’ = 70x^4 g’ = (60x^2-20x)/(20x^3-10x^2)

70x^4(ln(20x^3-10x^2)) + 14x^5((60x^2-20x)/(20x^3-10x^2))

x^2ln(x) derivative

f’g + fg’

f = x^2 g = ln(x) f’ = 2x g’ = 1/x

2x(ln(x)) + x^2(1/x) 2xln(x) + x x(2lnx + 1) = 0

x(2lnx + 1) = 0

x = 0 0 = 0 not in domain

2lnx + 1 = 0 2lnx = -1 lnx = -1/2 x = e^(-1/2)

f(.1) = -.023 f(e^(-1/2) = -.18 f(2) = 2.77

max (2,2.77) min (e^-1/2, -.18)

ln(19)+2ln(x)+ln(y)

ln((7^2/x)/3) ln(7^2/3x)

ln((x+5)(x+1)) ln(x^2+x+5x+5) ln(x^2+6x+5)

ln(41x^-4y) ln(41)-4ln(x)+ln(y)

ln(8rt(e^2)) ln((e^2)^(1/8)) 1/8ln(e^2) 1/4

7ln(x) + ln(y) ln(yx^7)

ln(x^2-4x-45) - ln(x+5) = ln(9) ln((x^2-4x-45)/(x+5)) = ln(9) (x^2-4x-45)/(x+5) = 9 ((x+5)(x-9))/(x+5) = 9 x-9 = 9 x = 18

1/13(ln(x)+ln(y)) 1/13ln(xy) ln((xy)^(1/13))

2e^(4x-1) = 30 e^(4x-1) = 15 4x-1 = ln(15) 4x = ln(15)+1 x = (ln(15)+1)/4

9x^4ln(x^4) 36x^4ln(x) product rule f = 36x^4 g = ln(x) f’ = 144x^3 g’ = 1/x

f’g + fg’

144x^3(ln(x)) + 36x^4(1/x) 144x^3(ln(x)) + 36x^3 36x^3(4lnx+1)

9x - 3ln(x) 9 - (3/x)

6x^2 - 10x + 8 + ln(x) 12x - 10 + x^-1 12 + x^-2 12 - 1/x^2

6x^2 - 10x + 8 + ln(x) 12x - 10 + x^-1 12 + x^-2 12 - 1/x

12 - 1/x^2 = 0 12 = 1/x^2 12x^2 = 1 x^2 = 1/12 x = sqrt(1/12)

we already know its sqrt(1/12)

6(sqrt(1/12))^2 - 10(sqrt(1/12)) + 8 + ln(sqrt(1/12)) 6(1/12) - 10sqrt(1/12) + 8 + 1/2ln(1/12) 6/12 - 10sqrt(1/12) + 8 + 1/2ln(1/12) 8.5 - 10sqrt(1/12) + 1/2ln(1/12) 5.60284613673 5.603

nah it wanted me to use .289 which wouldve gotten 4.36979740913

quotient rule f’g - fg’ / g

f = 8x g = ln(x) f’ = 8 g’ = 1/x

8ln(x) - 8x(1/x) / (ln(x))^2 8ln(x) - 8 / ln(x)^2 8(ln(x)-1) / ln(x)

8(ln(x)-1) / ln(x)^2 = 0 8(ln(x)-1) = 0 ln(x)-1 = 0 ln(x) = 1 x = e e is like 2.7 so its in range ok so now we solve for 2.1 (8*(2.1))/(ln(2.1)) 22.64

e (8*(e))/(ln(e)) 21.75

4 (8*(4))/(ln(4)) 23.08

min at 3, 21.75 max at 4,23.08

ln(9x^2 - 7x - 10) chain rule f = ln(x) g = 9x^2 - 7x - 10 f’ = 1/x g’ = 18x - 7

f’(g(x)) * g

1/(9x^2-7x-10) * (18x-7) (18x-7)/(9x^2-7x-10)

(18x-7)/(9x^2-7x-10) = 0 18x - 7 = 0 18x = 7 x = 7/18

not in the interval

so evaluate at 11.6 and 13.4 ln((11.6)^2 - 7(11.6) - 10) 3.77

ln((13.4)^2 - 7(13.4) - 10) 4.33

min at 11.6, 3.77 max at 13.4, 4.33

11x^3/ln(x^4) quotient rule f’g - fg’ / g^2 f = 11x^3 g = ln(x^4) f’ = 33x^2 g’ = 4/x (33x^2(ln(x^4)) - 11x^3(4/x)) / ln(x^4)^2 (33x^2(ln(x^4)) - (44x^3/x)) / ln(x^4)^2 (33x^2(ln(x^4)) - 44x^2) / ln(x^4)^2 (33x^2(4)(ln(x) - 44x^2) / (4ln(x))^2 (132x^2(ln(x)) - 44x^2) / (4ln(x))^2 (44x^2(3ln(x) - 1)) / 16(ln(x))^2 (11x^2(3ln(x)-1) / 4ln(x)^2

79x + ln(x^2+5)

chain rule f = ln(x) g = x^2+5 f’ = 1/x g’ = 2x

f’(g(x)) * g’(x)

1/(x^2+5) * 2x 2x/(x^2+5)

79 + 2x/(x^2+5)

Embedded Files

60de6688aae45c2b672e4f361b9a3c382a870d3f: page=1

05ed28a949e6b8ae8f0475a8369873ca7d72fc83: page=2

f67f5b1f9c17183ef74e961345c5da1c5bc1aec4: page=3

219d9d96ff801683239a04ba5fdecce98433ffaf: page=4

937c1e1001302666451f53817ac75a9fc5765900: page=5

e3046db67c078da9d1ae78ab5b6b6cecd75f99ba: page=6

ee0616c974db4879b5c052e620c94557d28a9b97: page=7

c4d9d027dd9b70d79da8f48f993a127b11a81572: page=8

0045756d09e787d7bf83a7a5de42ee24e80abd0a: page=9

f7f58ac555c91e3c026211bb6bda3515cc4033fa: page=10

04779e2b8ae10237ad1ae3c0d8e5384a1b03488a: page=11

1afda065f700c934bbdf63dcd717dcffc93e2b6a: page=12

b62818e1c434b858f0a3c9f8ed1774a8bb0b199b: page=13

376716afc2755083cc9b76ffa083bb87bd2ddce0: page=14

3f4c04e19e309477f1b8e8047d27b45e791db75c: page=15

413e20ce61a7651866dbd22f60990dd14c5e22be: page=16

8d61bd33261a20b0596643f542dfa7ef13b06864: page=17

1b380ebdd21ba7c58f8df0645dda783d14897891: page=18

dfa049718d69bbb39ae7ee1c9ac7296aebfd1127: Pasted Image 20251121062301_180.png

2240e1cf40d5567ebbebe75f3d774c7df1d38117: Pasted Image 20251121062339_914.png

6f5ac9a5663c2eb71d661015ad020a3037d44ae9: Pasted Image 20251121062509_329.png

46edf3814fa8b68791aab4d6138fe07d767cecb9: Pasted Image 20251121062853_813.png

89ca02bbb4ae3e02da1acca23d10421da62e2383: Pasted Image 20251121063048_858.png

dd9ed2a451515d45c1acf09b0a5ce6bbc6d8465a: Pasted Image 20251121063147_386.png

fd9564a9850f8848d5065b8c9e71f2d9f8b01431: Pasted Image 20251121063332_386.png

fef9c5dc7c4e946274407aa7b6e5741ed06af59e: Pasted Image 20251121063916_808.png

eed025f840e4950e89825ad9b06041f39f48dccd: Pasted Image 20251121064259_402.png

7ee88f39dc28dd8f21154f975f36e75989a6c8ef: Pasted Image 20251121064509_048.png

53d0e46f7e3dd330e301b2a16ce7309f5f0fd475: Pasted Image 20251121065322_800.png

d80e4a1c5a4df91e683373cd6f13556724175839: Pasted Image 20251121065350_168.png

1038057fc885b5d048e3ca7638ed87c5e00808e0: Pasted Image 20251121065918_464.png

2e91e8268b6ed52a4fcb4cbe27a43cda7db95046: Pasted Image 20251121070249_963.png

0a3c8117f55a739ddb12188f1ce6e057499bd465: Pasted Image 20251121072229_734.png

2ca882de41014f81ed0e5d534f333d81b9cbf598: Pasted Image 20251121073522_266.png

f97f93aded9a80aa5733150b46a5acdfa99074a9: Pasted Image 20251121075451_424.png

1e249256eaf98acb92280d19870a3dda69a1ae45: Pasted Image 20251121080036_084.png