⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠ You can decompress Drawing data with the command palette: ‘Decompress current Excalidraw file’. For more info check in plugin settings under ‘Saving’

Excalidraw Data

Text Elements

Pe

P is starting r is rate

Ce^kt C is starting k is rate

y = Ce^kt k = .041 y = 7700e^.41t t = 5 y = 7700e^(.415) 9452 14400 = 7700e^(.41x) 1.87012987 = e^(.41*x) ln(1.87012987) = .41x ln(1.87012987)/.41 = x 15 years

t = 5

15 years

k = -.047 half life means time to cut in half

compound yearly at -.047 y = Ce^(kt) 1/2(150) = 150e^(-.047(t)) 75 = 150e^(-.047t) .5 = e^(-.047t) -0.69314718056 = -.047t 14.7478123523 = t 14.7 years

y = Ce^(kt) t = 4 200 = 100e^4k 2 = e^4k ln2 = 4k (ln2)/4 = k 0.17328679514 = k

300 = 100e^x(0.17328679514) 3 = e^x(0.17328679514) ln3 = 0.17328679514x ln3/0.17328679514 = x 6.33985000288 = x 6.34 years

as price increases, sales decrease R(x) = demandx Elasticity = deltasales/deltaprice = (deltasales/sales)/(deltap/p) P/X * deltax/deltap P/x * 1/p p = D(x) E = -1/x * D(x)/D’(x)

if E= 2 this means a 1% increase in price will result in a 2% decrease in sales

revenue is increasing when derivative is positive revenue is demand * x revenue is increasing when R’ is positive R’ = D’(x)x + D(x)

revenue is increasing when E>1

revenue increasing when e>1

e = deltasales / deltaprice

P(50) = D(50) = 300 - 2(50) = 200

-1/x * D(X)/D’(x) -1/x * (300-2x)/-2 -1/x * -(300-2x)/2 -1/x * (-150 + x) 150/x - 1

E = 1

1 = 150/x - 1 2 = 150/x 2x = 150 x = 75 so 75

-1/x * D(x)/D’(x) -1/x * (100e^-.5x)/(100e^(-.5x) * -.5) -1/x * 1/-.5 -1/x * -2 2/x 1 = 2/x 1x = 2 x = 2

2

2

y = Ce^(kt) we’re solving for t we dont know C but we can just say 100

y = 100e^(-.000124t)

and we know its - 28% so 72 = 100e^(-.000124t) 72/100 = e^(-.000124t) ln(72/100) = -.000124t ln(72/100)/-.000124 = t 2649.22634655 = t 2649.2 = t

Ce^-kt 50 = 100e^(-.051t) 1/2 = e^(-.051t) ln(1/2) = -.051t (ln(1/2))/-.051 = t 13.5911211874 = t 13.6 = t

Ce

200 = 100e^8k 2 = e^8k ln(2) = 8k ln(2)/8 = k 0.08664339757 = k

300 = 100e^(0.08664339757t) 3 = e^(0.08664339757t) ln(3) = 0.08664339757t (ln(3))/0.08664339757 = t 12.6797000058 = t 12.68 = t

39 = 100e^(-.000124t) 39/100 = e^(-.000124t) ln(39/100) = -.000124t (ln(39/100))/-.000124 = t 7593.61725692 = t 7593.6 = t

minutes = 41 + ce^(-kx) 52 = 41 + ce^(-k0) 52 = 41 + ce^(0) 52 = 41 + c 11 = c

43 = 41 + 11e^(-k11) 2 = 11e^(-k11) 2/11 = e^(-k11) ln(2/11) = -11k ln(2/11)/-11 = k 0.154977099294 = k

x = 41 + 11e^(-(0.154977099294)17) x = 41.7892158549 x = 41.8

ce^-kt 49000 = 66000e^(-5k) (49000/66000) = e^-5k ln(49000/66000) = -5k (ln(49000/66000))/-5 = k 0.0595668887832 = k

x = 66000e^(-0.0595668887832(13)) x = 30425.6252089 x = 30425.63

35000 = 77000e^(-3k) 35000/77000 = e^-3k ln(35000/77000) = -3k ln(35000/77000)/-3 = k 0.262819120121 = k

x = 77000e^(-10(0.262819120121)) x = 5560.08958556 x = 5560.09

Ce^kt 17 = 9e^k4 17/9 = e^k4 ln(17/9) = k4 ln(17/9)/4 = k 0.15899719168 = k

x = 9e^23(0.15899719168) x = 348.681879332 x = 348.68

429.8 = 400e^10k 429.8/400 = e^10k ln(429.8/400) = 10k ln(429.8/400)/10 = k 0.00718554371004 = k

x = 400e^21(0.00718554371004) x = 465.150479479 x = 465.15

2500e^(.049t)

-1/x * D(x)/D’(x)

chain ruuule f = sqrt(x) g = 192-2x f’ = (1/2)x^-1/2 g’ = -2

f’(g(x)) * g’(x) (1/2)(192-2x)^(-1/2) * -2

-(192-2x)^(-1/2) -1/(192-2x)^(1/2) -1/sqrt(192-2x)

-1/x * (sqrt(192-2x)/(-1/sqrt(192-2x))

multiplying fractions a/(b/c) = a * c/b

sqrt(192-2x) / -1/sqrt(192-2x) sqrt(192-2x) * sqrt(192-2x)/-1 (192-2x)/-1 -(192-2x) -192+2x

-1/x * (-192+2x) (192-2x) / x

x * sqrt(192-2x) product rule

f’g + fg’ f = x g = sqrt(192-2x) f’ = 1 g’ = -1/sqrt(192-2x)

1(sqrt(192-2x) + x(-1/sqrt(192-2x)) sqrt(192-2x) + -x/sqrt(192-2x) sqrt(192-2x)/1 + -x/sqrt(192-2x) multiply first term by sqrt(192-2x) 192-2x/sqrt(192-2x) - x/sqrt(192x-2x) 192-3x/sqrt(192-2x)

now find 0s 192 -3x = 0 192 = 3x 64 = x

-1/x * D / D’ D = 105-2.1x D’ = -2.1

-1/x * ((105-2.1x) /-2.1) -1/x * (-50+x) 50/x - 1

x(105-2.1x) 105x-2.1x^2 -2.1x^2 + 105x -4.2x + 105 = 0 105 = 4.2x 25 = x

-1/x * D/D’

D = 196 - 3.5x D’ = 3.5

-1/x * (196-3.5x)/(3.5) -1/x * (56-x) -56/x - 1

(196-3.5x)x

f’g + fg’ f = 196-3.5x g = x f’ = -3.5 g’ = 1

((-3.5)(x)) + (196-3.5x)(1) -3.5x + 196 - 3.5x 196 - 7x

196 = 7x 28 = x

-1/x * 136e^(-.125x) / ((136e^(-.125x)) * -.125)

-1/x * -1/.125

-1/x * -8

-1/x * -8 8/x

f = x g = 136e^(-.125x) f’ = 1 g’ = 136e^(-.125x) * -.125

f’g + fg’ 1(136e^(-.125x)) + x(136e^(-.125x) * -.125) 136e^(-.125x) + x(-17e^(-.125x) 136e^(-.125x) - 17xe^(-.125x)

e^(-.125x)(-17x+136) = 0 -17x+136 = 0 136 = 17x 8 = x

84e^(-.01x) / 84e^(-.01x) * -.01

1 / -.01 -1/.01 -100

-1/x * 100 100/x

f = 84e^(-.01x) g = x f’ = 84e^(-.01x) * -.01 g’ = 1

f’g+fg’

(84e^(-.01x) * -.01)x + 84e^(-.01x) * 1 (84e^(-.01x) * -.01)x + 84e^(-.01x) (-.84e^(-.01x))x + 84e^(-.01x) -.84xe^(-.01) + 84e^(-.01x)

e^(-.01)(-.84x + 84) = 0 -.84x + 84 = 0 84 = .84x 100 = x

1/x * (9 - 3x^(1/2)) / (-1.5/x^(1/2)) 1/x * (9-3x^(1/2) * (2sqrt(x)/3)) 1/x * (3)(3-x^(1/2)(2sqrt(x)/3) 1/x * (

Embedded Files

a6f074245287ba137400ff76dfae8e19f5d3f987: page=1

eec92eb322a2f07e44b75f25c976d7d6841fd2ac: page=2

6499124c0961740dfc7616a0da647034596503c8: page=3

6cd642c875302d6445a7d9560f773673e0cce917: page=4

d02d47e92b85744b3146f948541f30b788acc356: page=5

73532d2a461c2a412b9df3b1e5d45a5702e9cdc6: page=6

9d196f80f1eef7f76f36f03ea90a28c5529bd6fd: page=7

bf4317f1d1cce8c8164447d23b25a775998592f0: page=8

9a1c8e23f54b674063275ba915c7ee230a34d0a2: page=9

496d6bc843f6b531a58d87a7aa8a8b127977117c: page=10

4442d23bf4ae0b77df6f86aa0443259140edb5cd: page=11

eecea897853fe883d7f3541cd51a38bfc880a1e3: page=12

2cbcaecd2cad77c70b028bf74c831e8b5c20e229: page=13

e8eeec01ed807f63b9aacc6f4f67be7962101a89: page=14

c69b72fec0eca1dff67fc7d4f017552968e0ca3c: page=15

7ff51c4463aeae3c712f601efc1866ab15d5f338: page=16

79b732f992c555418c8828536c4df4540de2696a: page=17

93805017dd053b26534f53393a937a5b80d886e3: page=18

f80999479e3714a19d16e50781f0541f5ab1c546: Pasted Image 20251123180025_067.png

d6adbf6e5d48b111567e8b367e16665d998e4b48: Pasted Image 20251124071354_825.png

60cbee5e36df4b295e0ac6d9ae1b95e671b33fa5: Pasted Image 20251124071548_879.png

b1f35a0d077a9d2c2f1c33c3bc5ed0c0dcecdbf8: Pasted Image 20251124074406_884.png

d169c092e04984490fbed567b347522f6e3e8827: Pasted Image 20251124074802_646.png

bb786b483dc2c720c57c1a798e65dfceb1d8cfc6: Pasted Image 20251124075111_076.png

a4bb66478e514d781242f2e4dfd912b0ac0be4ce: Pasted Image 20251124075502_428.png

ffd1c32f37ffa497c3cf43d019d232579d29b24b: Pasted Image 20251124075823_774.png

3fce8fe5825bf040b351d496449cfe31bf2d782b: Pasted Image 20251124080052_821.png

28432876d7f08711a0db7a9fb952096c0b83ecd9: Pasted Image 20251124080300_898.png

56d87b351d0560c7ee3326123e9f6b03e2ca7430: Pasted Image 20251124080357_794.png

d8b43625da266c6e60f72bd001911513c6b1e7da: Pasted Image 20251124092508_722.png

d788099a9419a6f0ddf01b6e3b50ee24276c60b1: Pasted Image 20251124105536_881.png

cb955e3e7485d6d179dcfc6ac9d2c4f324182dab: Pasted Image 20251124110111_459.png

9a01d745e8b10b812627ed5ac1e4cbd8c6275edc: Pasted Image 20251124110410_976.png

e9db66f812a3a4873608ca32f9089ac4e4f51e6b: Pasted Image 20251124110857_928.png

ece4d9aecaf6ca2deb78b986f53ba74b95963705: Pasted Image 20251124111845_551.png

51ae4ec83f4c9342b076d78bf778097210ac4c9c: Pasted Image 20251124112521_297.png

ee546c49ff18f814747ecb8f7b0dfe026dd984a0: Pasted Image 20251124112830_580.png

b412238ebbcfef33069889e339e0f31441e60a08: Pasted Image 20251124113029_848.png

530617a26f9e9f414a510e177c3b0759a6da44ce: Pasted Image 20251124113446_719.png