⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠ You can decompress Drawing data with the command palette: ‘Decompress current Excalidraw file’. For more info check in plugin settings under ‘Saving’

Excalidraw Data

Text Elements

inc

dec

inc

f’(x) >0

f’(x) < 0

f’(x)>0

f’(x) = 0

0^2 = 0 1^2 = 1 (inc) -2^2 = -4 (dec) (-inf, 0) dec (0, inf) inc

horizontal tangent line

vertical tangent line

3x^2 - 3x 3x(x-1)

3x(x-1) 3(0)(0-1) 3(1)(1-1) both 0s, x = 0 and x = 1

3(-1)(-1-1) = 6 3(2)(2-1) = 6 3(1/2)(1/2-1) = -.75

domain (-inf, inf)

0

1

-1

6

2

6

1/2

-.75

inc from (-inf, 0)u(1,inf) dec from (0,1)

(x^2-4)^(2/3)

chain rule

f = x^(2/3) g = x

f’(g) * g’

2/3(x^2-4)^(-1/3) * 2x 4x/(3(x^2-4)^1/3 f’x= 0 when 4x/4 = 0, so zero at 0 ( horizontal tangent ) f’x= is undefined when 3(x^2-4)^1/3 = 0, so zero at 2 and -2 ^ sharp or vertical tangent

0

-2

2

-3

(4(-3))/(3(-3^2-4)^(1/3) -12/3(5)^1/3 - negative number 4(-1)/3((-1)^2-4)^(1/3) -4 / 3(-3)^(1/3) - positive number 4(1) / (3((1)^2-4)^(1/3) = 4/3(-3)^1/3 - negative number 4(3) / 3((3)^2-4)^(1/3) = 12/3(9-4)^1/3) - positive number

-1

3

1

f inc (-2,0)u(2,inf) f dec (-inf,-2)u(0,2)

f’ = 2x-2 2(1)-2 = 0 no undefined

2(0)-2 = -2 2(2)-2 = 2

1

0

2

dec (-inf, 1) inc (1,inf)

inc (-inf, -2)(0,1) dec (-2,0)u(1,inf)

2(0) = 0 2(-1) = -2 2(.5) = 1

1^2 = 1 -1+2 = 1

-2+3 = 1 -2^2 = 4 not continuous at -2

P = R-C P = 7.2x-.001x^2-2.4x+.0002x^2 P = 4.8x-.0008x^2 P’ = 4.8-.0016x 0 = -.0016x + 4.8 -4.8 = -.0016x 3000 = x

-.0016(2000) + 4.8 =1.6 -.0016(4000) + 4.8 = -1.6

inc (0, 3000) dec (3000, 6000)

so it is increasing from 0 to 3000

2x^2+12x+20

4x+12

4(-3)+12 = 0

4(-4) + 12 = -4

4(-2) + 12 = 4

dec: (-inf, -3) inc (-3, inf)

2x^2-16x+35 4x-16

4(4)-16 = 0

4x-16 inc (4, inf) dec (-inf,4)

-3x^2 + 18x -15

-3x^2+18x-15 = 0 x^2 - 6x + 5 = 0 ( divide both sides by -3 (x-1)(x-5) = 0

1, 5 are critical values

-3(0)^2 + 18(0) - 15 = -15 -3(2)^2 + 18(2) - 15 = -3(4) + 36 -15 = -12 +21 = 9 -3(6)^2 + 18(6) - 15 = -3(36) + 108 - 15 = -108 + 93 = -15

inc(1,5) dec(-inf,1)u(5,inf)

(x-1)/(x-5)

f x-1 g x-5

f’ 1 g’ 1

(f’g-fg’)/g^2 ((1)(x-5)-(x-1)(1))/(x-5)^2 (x-5-x+1)/(x-5)^2 (-4)/(x-5)

None, -4 is never zero. though there is a VA at 5.

(-4)/(x-5)

-4/(4-5)^2 -4/(-1)^2 -4/1

-4/(6-5)^2 -4/(1)^2 -4/1

always decreasing, va at 5 dec: -inf, 5 5,inf

-x^3 +6x^2 -12x + 5 -3x^2 + 12x -12

-3x^2 + 12x -12 = 0 x^2 - 4x + 4 = 0 (x-2)^2 = 0 (2-2)^2 = 0

-3(1)^2 + 12(1) -12 = -3 -3(3)^2 + 12(3) -12 = -3(9) + 36 -12 = -27 + 36 - 12 = -3

horizontal slope at 2

dec (-inf, 2) (2,inf)

chain rule f’(g(x)) * g’(x)

f = x^2 g = -5x+7

f’ = 2x g’ = -5

2(-5x+7) * -5 -10(-5x+7) 50x-70

50x-70 = 0 50x = 70 x = 70/50

(-5(1)+7)^2 (-5+7)^2 2^2 4

(-5(2)+7)^2 (-10+7)^2 (-3)^2 6

-x^3 + 3x^2 - 3x + 3

-3x^2 + 6x - 3

-3x^2 + 6x -3 = 0 -x^2 + 2x -1 = 0 x^2 -2x + 1 = 0 (x-1)^2 = 0 x = 1

-3x^2 + 6x - 3

-3(0)^2 + 6(0) -3 = -3 -3(2)^2 + 6(2) -3 -3(4) + 12 - 3 -12 + 12 - 3 -3

-3(4)^2 + 6(4) -3 -3(16) + 24 -3 -48 + 21 -27

decreasing on -inf, inf

216.756x - 0.009x

0x18200

216.756 - .018x

216.756 -.018x = 0 216.756 = .018x (216.756)/.018 = x

12042 = x

critical point 12042

216.756 - .018(12041) 216.756 - 216.738 = +

216.756 - .018(12043) 216.756 - 216.774 = -

increasing (-inf, 12042) decreasing (12042, inf)

BUT 0x18200

increasing (0, 12042) decreasing (12042, 18200)

4x^3 + 36x^2 + 96x

12x^2 + 72x + 96

12x^2 + 72x + 96 = 0

12(x^2+6x+8) = 0

x^2 + 6x + 8 = 0

(x+2)(x+4) = 0

-2 and -4

12x^2 + 72x + 96

12(-1)^2 + 72(-1) + 96 12 - 72 + 96 36

12(-3)^2 + 72(-3) + 96 12(9) -216 + 96 108 -216 + 96 -12

12(-5)^2 + 72(-5) + 96 12(25) - 360 + 96 300 - 360 + 96 36

inc: (-inf,-4), (-2, inf) dec (-4, -2)

Embedded Files

0412e14365cb36bacb2f295721834b0dc587994b: page=1

a251141ad284981ececea936357214b6adde7bea: page=2

0130c80cbd0243c2411aa91a7de5844432d4a4e6: page=3

f93d88ca46eea3c822cdf5f0c770dbda387c38fa: page=4

00bd42c065e4dd99240e3ea2867e72986541034b: page=5

67ce7c818b7372968031dce76b40605f49fe3e05: page=6

b2e9668fb7fc2b4bbb86aba4747bcace17587743: page=7

280fc5260902f288ba2936f98c7af62a5eaec64c: page=8

45d586f1b8d64ba111070f8235707b6bf939ab4b: page=9

19ee1a269d82516e97ff3835c4edc58c593312d3: page=10

9e8bf0f3d94a7d6d25145c5a0894f3ce6bf7f2cb: page=11

12d81c8a44a5bef0404b453a69febf016b8a6c8e: page=12

9a2793f8f5340dd111a8c1404219e2a588fa492f: page=13

fdc0587889e024b463dbb7f35044137b158cdfcb: page=14

da5dff6cd03ac9ef06069e4b572d776a44c3122b: Pasted Image 20251001142531_346.png

01d480e8b2439fa4ee9fe89f5a20a7c0e4be475f: Pasted Image 20251001142756_330.png

fd4a53e62961b6673b3a1a5c18c0c35abe29b15a: Pasted Image 20251001142926_428.png

784f92688b393ea8a9c6508a474680b0500d5c06: Pasted Image 20251001143333_845.png

41ece1ebd76c9f35ff4fefdeb3b06cc48ea98b2c: Pasted Image 20251001144154_515.png

74a2e22994ac72e9bb9d8d04401dcbdca30e5b4b: page=8

623e81ff3e6caf533c9f7d314015bade7f006e49: Pasted Image 20251001144814_526.png

99a9383988faa168eee0500663fca4c19ff73865: Pasted Image 20251001145431_268.png

46e3877745a5c890eb11e7004572d94edc17df0b: Pasted Image 20251004214826_569.png

1742ef6bf7230520ce40326d17beafbe827508ab: Pasted Image 20251004215200_840.png

7c3308d55abc9434155b44a46b088e9429179c07: Pasted Image 20251004215557_649.png

ee6ced59ec697dc04586fdd5fb53ffeb6e1a2a22: Pasted Image 20251004220156_771.png

9a307ee94c64c775ea75270fdbf280a1b92e274e: Pasted Image 20251004220806_784.png

e27b747813f7423148d0984cf701506a5e30e5cc: Pasted Image 20251004223727_813.png

baf668307a74bd2c4b4bea673c25554f766b4331: Pasted Image 20251004224627_645.png