⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠ You can decompress Drawing data with the command palette: ‘Decompress current Excalidraw file’. For more info check in plugin settings under ‘Saving’

Excalidraw Data

Text Elements

6x^3 + 48x^2 - 210x + 7 18x^2 + 96x - 210

18x^2 + 96x - 210 = 0 6(3x^2 + 16x - 35) = 0 3x^2 + 16x - 35 = 0 3x^2 + 21x -5x -35 3x(x+7) -5(x+7) (x+7)(3x-5) = 0

zero at -7 3x -5 = 0 3x = 5 x = 5/3

zero at 5/3

so -7 and 5/3 are our critical values

6(x+7)(3x-5)

-10 6(-10+7)(3(-10)-5) 6(-3)(-35) 630

-7 ( zero )

0 6(0+7)(3(0)-5) 6(7)(-5) -210

5/3 ( zero )

10 6(10+7)(3(10)-5) 6(17)(25) 2550

max at -7

min at 5/3

6*(-7)^3 + 48*(-7)^2 - 210*(-7) + 7 1771

6*(5/3)^3 + 48*(5/3)^2 - 210*(5/3) + 7 -1637/9

so, local max at -7, 1771 local min at 5/3, -1637/9

193 + (-119t^2)/(t^2+43) 193 -119 * ((t^2)/(t^2+43))

quotient rule

(f’g - fg’) / g^2 f = t^2 g = t^2+43 f’ = 2t g’ = 2t ((2t)(t^2+43) - (t^2)(2t))/(t^2+43)^2 (2t^3 + 86t - 2t^3)/(t^2+43)^2 (86t)/(t^2+43)

-119 * 86 = -10234

-10234t / (t^2+43)^2 denominator always positive cause exponents numerator always negative cause t is never gonna be negative decreasing 0, inf increasing never

(-119t^2)/(t^2+43)

degree is equal, so as t approaches inf, it approaches ratio of leading coefficients -119/1 -119

193 -119 = 74

so temp of room is 74

-x^2-2x+6 -2x-2 = 0 -2 = 2x -1 = x

critical value at -1, which is in interval. also evaluate at -6 and 5 cause its absolute extrema

-6 -(-6)^2 - 2(-6) + 6 -18

-1 -(-1)^2 - 2(-1) + 6 7

5 -(5)^2 - 2(5) + 6 -29

absolute minimum at 5, -29 absolute maximum at -1, 7

-3x^3 + 18x^2 + 10x - 3 -9x^2 + 36x + 10 -18x + 36

-18x + 36 = 0 36 = 18x 2 = x

-18(0) + 36 = 36 -18(4) + 36 = -36

concave up from -inf, 2 concave down from 2, inf

we already know point of inflection at 2 from last question -3(2)^3+18(2)^2+10(2)-3 = 65

(2,65)

revenue = demandx revenue = 14x cost = .2x^2 + 5.6x + 5 profit = revenue - cost profit = 14x - .2x^2 - 5.6x - 5 profit = -.2x^2 + 8.4x - 5 profit’ = -.4x + 8.4 -.4x + 8.4 = 0 8.4 = .4x 21 = x

but is it a max?

-.4(20) + 8.4 = .4 -.4(21) + 8.4 = 0 -.4(22) + 8.4 = -.4

yep max at 21

-.2x^2 + 8.4x - 5 -.2(21)^2 + 8.4(21) - 5 83.2

area = xy 1269 = xy y = 1269/x area = x*(1269/x)

extfence = (2)(14.85)(x) + (2)(14.85)(1269/x) extfence = 29.7x + 29.7(1269/x) extfence = 29.7x + 37689.3/x intfence = 11(2x) intfence = 22x cost = extfence + intfence cost = 29.7x + 37689.3/x + 22x cost = 51.7x + 37689.3/x cost’ = 51.7 - 37689.3x^-2 37689.3/x^2 = 51.7 37689.3 = 51.7x^2 729 = x^2 27 = x

so, x is 27 1269/27 = 47 y is 47

the dimensions that minimize the cost are x=27 and y=47

The maximum value of profit is 83.2$

Embedded Files

e958aaa572929e879260121af4a32dfa8a37872c: Pasted Image 20251119074730_402.png

645b528e442ef5fecc2376004f322f4e427306c2: Pasted Image 20251119075352_018.png

25cd8e4d57655b6f373245a9499331b8a7e2a1d2: Pasted Image 20251119080209_653.png

402dd71a057420c5275f6c0be23fd1931a27e698: Pasted Image 20251119083308_626.png

c159476bca7414bd634745e38a2048995a98de54: Pasted Image 20251119085459_178.png

a77cb5b86f5e2cf65570738514e32acdc730d3a1: Pasted Image 20251119085518_014.png

036675db6b4b11f26dbc21c3cff1b1207b80e980: Pasted Image 20251119085544_227.png

c7bf0786c05f8aef3bce0aff4b74d1b623171374: Pasted Image 20251119085715_710.png

34df2c669b116fa437e06a70c7c96e140d83d808: Pasted Image 20251119090118_333.png

4736610866e607d659daf16bd01e2085a9cfdffa: Pasted Image 20251119092708_192.png