⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠ You can decompress Drawing data with the command palette: ‘Decompress current Excalidraw file’. For more info check in plugin settings under ‘Saving’

Excalidraw Data

Text Elements

f(x) = x^2 + 5 f’(x) = 2x

f(x) is an antiderivative of 2x

g(x) = x^2 - 3 g’(x) = 2x

how do i know what the antiderivative is?

actual antiderivative of g’(x) or f’(x) is: x^2 + c

f(x) =x^3 + x^2 + 50 g(x) = x^3 + x^2 - 80

both are antiderivatives of 3x^2 + 2x

integral sign

( find the antiderivative )

antiderivative

differential ( what variable to use )

3x

(1/2)x^6 + c

t^6 - t^4 + 10/3t^3 + t + c

5ln(|x|) + c

(x^(n+1))/(n+1) + C

(x^(n+1))/(n+1) + C

3x^6 / 6 +c 3/6x^6 +c 1/2x^6 +c im goated

alternatively, if i try to use power rule

5x^-1 5x^0/0 = no good

y^-1/2 (y^(-1/2+1))/(-1/2 + 1) + c (y^1/2)/(1/2) + c

2y^(1/2) + c 2sqrt(y) + c

e^x - 5/7x^7/5 + 3x + c

t + 1/t + 1/t^2 t + 1/t + t^-2 (1/2)t^2 + ln|t| + t^-1 / -1 + c

(1/2)t^2 + ln|t| - t^-1 + c

x - 1/x

1/2x^2 - ln(|x|) + c

1/2(1)^2 - ln(|1|) + c = 3/2 (1/2) - ln(1) + c = 3/2 .5 - ln(1) + c = 3/2 .5 + c = 1.5 c = 1

4e^x + 5x

4e^x + 5/3x^3 + c

-4 = 4e^(0) + 5/3(0)^3 + c -4 = 4 + c -8 = c

so

4e^x + 5/3x^3 - 8

-5e^t - 8t -5e^t - 4t^2

-9/8 -9/8 x + c

5x^8 - 4 5/9x^9 - 4x + c

find antiderivative of 12/x^2 so thats 12x

so 12/-1x^-1 -12x

so it has to be a -12/x one

differentiate -7e^(x^2) -7e^(x^2) * 2x -14xe^(x^2)

so it has to be a -7e^(x^2) one so there is only one option.

150t - 6t^2 find antiderivative ( velocity is derivative of distance ) (150/2)t^2 - 6/3 t^3 75t^2 - 2t^3 + c

75(0)^2 - 2(0)^3 + c = 0 0 - 0 + c = 0 c = 0 so its just 75t^2 - 2t^3

75(10)^2 - 2(10)^3 5500

x^6(7x+5) 7x^7 + 5x

now integrate

7/8x^8 + 5/7x^7 + c

(7x-3)^2 (7x-3)(7x-3) 49x^2 -21x -21x + 9 49x^2 -42x + 9 now integrate

(49/3)x^3 + (-42/2)x^2 + 9x 49/3 x^3 - 21x^2 + 9x

-7x^6 - 3/x - 4/x

-7x^6 - 3x^-1 - 4x

-7/7x^7 - 3ln(x) - (4/4)/x^-4 -x^7 - 3ln(x) - x^-4 -x^7 - 3ln(x) - 1/x^4

-7sqrt(x) + 5qdrt(x) -7x^(1/2) + 5x^(1/4) -7/(3/2) x^(3/2) + (5)/(5/4) x^(5/4) (-7)(2/3)x^(3/2) + (5)(4/5)x^(5/4) (-14/3)x^(3/2) + (20/5)x^(5/4) (-14/3)x^(3/2) + 4x^(5/4) + c

40-10t^(1/2)

40t- (10/(3/2))t^(3/2) 40t - (10)(2/3)t^(3/2) 40t - (20/3)t^(3/2) + c 40(0) - (20/3)(0)^(3/2) + c = 9300 0 - 0 + c = 9300 c = 9300

40t - 15t^(3/2) + 9300

150-.08x 150x - .08/2 x^2 150x - .04x^2

6x^(-1/3) - 7 (6)/(2/3)x^(2/3) - 7x (6)(3/2)x^(2/3) - 7x (18/2)x^(2/3) - 7x 9x^(2/3) - 7x

-5/x + 2x^(3/5) - 3e^x -5x^-1 + 2x^(3/5) - 3e

integrate -5ln|x| + (2/(8/5))x^(8/5) - 3e^x -5ln|x| + (2)(5/8)x^(8/5) - 3e^x -5ln|x| + 10/8x^8/5 -3e^x + c -5ln|x| + (10/8)x^(8/5) -3e^x + c -5ln|x| + (5/4)x^(8/5) -3e^x + c

4x^2/x^2 - 7x/x^2 - 3/x^2 4 - 7x/x^2 - 3/x^2 4 - 7x(x^-2) - 3(x^-2) 4 - 7x^-1 - 3x^-2 integrate!

4x - 7ln(x) + 3x^-1 + c 4x - 7ln(x) + 3/x + c

Embedded Files

2cbbd0fd1353cf2414dfc6eb586bb15563e15b44: page=1

b0427fd83f01f864b7ba6ead324bc0ac04ae3792: page=2

ec0df51ab39067e3f7d6e51589e6ceb0b3a8ead7: page=3

01f6de802690aa20edb50e121a079c1a4eb2f23d: page=4

ac372ad7faf999289d7a8af4540c67950aad139c: page=5

1d6481aeb388e14672828bc1f20d6a7cf1a5b87b: page=6

69badc2987ac576ecab6fef5481e8e9df7cd8dc3: page=7

cbd29d5c7a88b6f4d1b6ae32199a515e50cfeccc: page=8

7798facaba7497234d3d3cacbc4e51db0edf9bb7: page=9

6555533f505778a6f03962e2c817664ce3394949: page=10

d318aab8ddc4d99fec3b2d14092cb0444828b456: page=11

b69cea976eaf238ddcc4d8d0fb9139ee283a8894: page=12

dfb8f2119db990e58ef41e4db0da03d669c39388: page=13

d4fb9cecefe12820d1ece38cc435e2b1d048dd40: page=14

e327d6f9142f3dd624267a0915fc3dad30c3f17d: page=15

b9f1aeac18e772aaba4fff00222ae2e590a2266c: page=16

153f2154c5785ab0bc7297134d007683c79e07b3: Pasted Image 20251127132909_696.png

bdd4f15217da64ac0ad2f8001af9bb6236c07ce0: Pasted Image 20251127133241_677.png

7e8d114e3088b24c491ad604d7497c501302d9ef: Pasted Image 20251127133420_879.png

e0c07df77bd9a5672525005399d59e72282cca3b: Pasted Image 20251127133531_985.png

ec6edd895644a43362b90f71834ec979b54f0387: Pasted Image 20251127133608_622.png

231230888f27377c5d1e9e3ab207447c67ba9eb0: Pasted Image 20251127135017_157.png

ac555123af9c6e1f31488b30b3761941234fc471: Pasted Image 20251127135400_661.png

14128e2abdd0f05aca3a4cfc47c131c4e41c5112: Pasted Image 20251127135513_443.png

41d9e7cc3aaf4e02f16f0fa95d7c331f436b9022: Pasted Image 20251127135605_520.png

6337fce9064fc34899accd0ccb759ed57b4dc600: Pasted Image 20251127140210_871.png

956c763349939e6dfc5c64bcd3d265cc31dd6e61: Pasted Image 20251127140819_288.png

19e41d55784afe9dd489f7ac928a2b504bc14e08: Pasted Image 20251127141757_161.png

cc01f87920df0595109314ef5fcf23aba93fafc0: Pasted Image 20251127142217_354.png

178b54e25bc135c15e448348610e7425dcef96a2: Pasted Image 20251127142317_633.png

224c93133d0b6085cdab07401efed52b1dbb29e7: Pasted Image 20251127142651_912.png

8d7044528e6be4e3ba9fb0da059fb3b614852f68: Pasted Image 20251127143002_557.png