⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠ You can decompress Drawing data with the command palette: ‘Decompress current Excalidraw file’. For more info check in plugin settings under ‘Saving’

Excalidraw Data

Text Elements

it has been determined that the cost of producing x units of a certain item is 10x + 375. the demand function is given by p = D(x) = 35 - .45x

find revenue find profit

revenue is demand ( price ) * x (36-.45x)(x) 36x - .45x

profit is all money coming in - all money were spending. revenue - cost. find profit 36x - .45x^2 -(10x+375) 36x - .45x^2 -10x -375) -.45x^2 + 26x -375

lim f(x)

x 3

limits are saying what y value is x approaching f(3) - what is the y value when x is 3

what y value is the function approaching as x gets closer to a

limit is 8

left sided / left handed limit denoted by: lim x3^-

right sided limit denoted by: lim x3^+

-5

-1

4

2

4

0

just means plug in the values. e.g. approaching 3 plug in 2.9 2.999 3.01 3.001

3^2+3(3)-7 9+9-7 18-7 11

2^3-5(2) 8-10 -2

4(0)^2-8(0)+3 3

+inf

3

3

3

( -3.1 + 5 ) / ( -3.1 + 3 ) = +/ - = -inf

posinf

get x3^- and x3^+

if they are the same, then the limit exists

3

does not exist

if we can plug in, plug in if we plug in and get a zero in our denominator, we must do more then manipulate until we can plug in (factor, rationalize w sqrt simplify, etc ) if we have vertical asymptote, + or - inf

-6

4(7) - 3 28 - 3 = 25

(2(2)^2+3(2)-1)^2

2^2-4

2-2

0

0

(x-2)(x+2)

(x-2)

(x+2) 2+2 4

factor x^2-4

2x^2+5x-3

x+3

2(-3)^2+5(-3)-3

6

2(9)-15-3

18-15-3 0

2x^2+5x-3

a

b

c

-6

5

6, -1

5

2x^2+6x-x-3 2x(x+3) -(x+3) (x+3)(2x-1)

((-3+3)(2(-3)-1))/(-3+3)

-7

1/sqrt(3) must simplify just multiply by sqrt(3)/sqrt(3)

(sqrt(x)+3)/(sqrt(x)+3)

((sqrt(x)^2+3sqrt(x)-3sqrt(x)-9)

(x-9)(sqrt(x)+3)

x-9

(x-9)(sqrt(x)+3)

1

sqrt(x+3)

1/(sqrt(9)+3) 1/6

6x+6 { x< -6 } -7x^2-8 { x>=-6 }

lim f(x) x-6

6(-6)+6 -36+6 -30

-7(-6)^2-8 -7(36)-8 -252-8 -260 does not exist

lim(x^2+4x-1) x2 2^2+4(2)-1 4+8-1

-6x^2-22x-20 a b c

-22x

-2x, 3x

-2x, 11

-6x^2

`

-2x(3x+11)-20

find 2 numbers that multiply to 6 * 20 = 120

and add up to 22

factors of 120 are: 10 12

10 + 12 is 22

-(6x^2+22x+20)

-(6x^2+10x+12x+20) -(2x(3x+5)+4(3x+5) -((2x+4)(3x+5)) -2(x+2)(3x+5)

-2(x+2)(3x+5) / x+2

-2(3x+5) -2(3(-2)+5) -2(-6+5) -2(-1) 2

(x-5)^2 (x-5)(x+5)

1/(x+5) 1/10

f(-2) = -2(-2)^2-6(-2)-3 -2(4)+12-3 -8+12-3 4-3 1

f(-2+h) = -2(-2+h)^2-6(-2+h)-3 -2(-2+h)(-2+h)+12-6h-3 (4-2h)(-2+h)+9-6h -8+4h+4h+2h^2+9-6h -8+8h+2h^2-6h+9 2h^2+2h+1

2h^2+2h+1-1 2h^2+2h

(2h^2+2h)/h

2h+2

(x-5)/(x-5)^2 (x-5)/(x-5)(x+5) 1/(x+5)

DNE

-3x^2+23x+70

-3*70 -210

2 numbers that add to 23 but multiply to -210

10 and 21 -7 and 30 30*-7 = -210

-3x^2+30x-7x+70 -3x(x-10) -7(x-10) (-3x-7)(x-10)

-3x-7

-3(10)-7 -30-7 -37

x^2+2x-35 -35 but add to +2… -5*7

x^2-5x+7x-35 x^2-5x+7(x-5) x(x^2-5)(x-5)

dont have to deal w all that shit. can just say its (x-5)(x+7).

10x^2+11x-6 10*-6 = -60 11 multiply to -60

factors of 60: 15, 4 15, -4 !

Sooooo

(x+15)(x-4)? or am i tripping

NOPE im tripping only do that if it is leading coeff of 1, so like

z^2+2z−35

instead factor by grouping

10x^2+15x-4x-6
5x(2x+3)-2(2x+3) (5x-2)(2x+3)

revenue = price * quantity profit = revenue - cost

revenue = -0.3x^2+41x cost = 8x+670

-0.3x^2+41x-8x-670 -0.3x^2+33x-670

Embedded Files

a6674f80e056e26486f07b58a3397f33f5359930: page=1

978235e6b7f19ec087b065e52a7b9d18f444782b: page=2

ad34c64863db9e460657daa2aaef262d80ea0564: page=3

65341a12a4561bd93ac2e1feee5712b9cefbc79c: page=4

8533ea38defcb3a7106fd2a352191593c430a84b: page=5

3decf0b29fa59eb68bf9da58139e88c81b8fafb2: page=6

5ac418097672e31f3b0d010d3a0ebdc70d569c2b: page=7

f3ac58475a35cf102c476e423c9619940a165a3f: page=8

ade56776460c8d4bdf87bfb1e7896063e5d349cc: page=9

668708adca83886cef81abb658f723f60f343b5b: page=10

ba78a1577f549e77e09b242d981f59f46eea0c90: page=11

dc92a76cd91c99f0826c3a48b002e66552a48631: page=12

219cf7c1cc3e07c6058cb7fabf42367e5824fceb: page=13

261ce0251808b9901b5d18342999821d3353aa55: page=14

7e6653ca1fd6ff1d03313927ad5e9f652b734fca: page=15

7b967905002c854ad43b85aa55d7b94cb3fa9b58: page=16

3f0adda81f7bb82bd3e9fa9334de78cc02cc6282: page=17

64b827c7ab78a8b51f7da1e803233548d22ea3f9: page=18

e96114c813cbdc46ba220e406095a122aa112019: Pasted Image 20250823142923_708.png

1a077b99fdb7f6bc122ec92dc7f83cbebee9c1f9: Pasted Image 20250823144143_057.png

287ae19d0f254c99e7451daba87009a3a0b7b288: Pasted Image 20250823144504_809.png

f6b4519c9ee187a2ade2e0d5322d140c74fd2b7f: Pasted Image 20250823150728_471.png

371d4e160820ca89fccc0257ffe396fb5423152e: Pasted Image 20250823150923_102.png

cdc99aa1371f482e7492b25dc65fdd5f6276770e: Pasted Image 20250825025841_052.png

fe49001b88a68dad34788301ef1ad75b8f6b6e89: Pasted Image 20250825034425_510.png