⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠ You can decompress Drawing data with the command palette: ‘Decompress current Excalidraw file’. For more info check in plugin settings under ‘Saving’

Excalidraw Data

Text Elements

(3x^2-1)(x^7+2) (6x)(x^7+2) + (3x^2-1)(7x^6) 6x^8 + 12x + 21x^8 -7x^6 27x^8 - 7x^6 + 12x

(2x)(x^3+1) - (x^2-3)(3x^2) 2x^4 + 2x - (3x^4-9x^2) 2x^4 +2x -3x^4 + 9x^2 (-x^4 + 9x^2 +2x) / (x^3+1)^2

function inside another function or, in math terms, a “composite function”

sqrt(x^3+3) x^3+3 is a function inside of another function sqrt()

derivative f(g) = f’(g(x)) * g’(x)

g = 2x -1 f = x

f’(g(x)) * g’(x) 4(2x-1)^3 * 2 8(2x-1)^3

this is already in factored form so we dont need to multiply it out… i dont know how i would know that.

f = x^2+1 g = x

f’(g(x)) * g’(x) 2(x^3) * 3x

derivative f(g) = f’(g(x)) * g’(x)

derivative f(g) = f’(g(x)) * g’(x)

g = 3x-2x^2 f = x

3(3x-2x^2)^2 * (3-4x) ^ this is in factored form

if there was a + and some other things ???? she would need to factor it out and stuff bunch of things being multiplied is factored form.

(x^2-1)^(2/3)

f = x^(2/3) g = x

2/3(x^2-1)^(-1/3)*(2x)

should prolly try to get rid of negative exponents

2(2x)/(3(x^2-1)^(1/3))

4x/3(x^2-1)^1/3

derivative f(g) = f’(g(x)) * g’(x)

  • (7)/(2t-3)

g(t) = -7(2t-3)

f = -7t^-2 g = 2t-3

14(2t-3)^-3 * 2 2*14 = 28 28/(2t-3)^3

derivative f(g) = f’(g(x)) * g’(x)

(3x^3 + 1)(-4x^2-3)

f’g +fg’

(6x^2)((-4x^2-3)^4) + (3x^3+1)(

f = -4x^2 -3 g = x

4(-4x^2-3)^3*-8x (6x^2)((-4x^2-3)^4) + (3x^3+1)(4(-4x^2-3)^3(-8x)) y = (-4x^2-3)^2(9x^2(-4x^2-3) + (-32x)(3x^3+1)) (-4x^2-3)^3(-36x^4 -27x^2 -96x^4 -32x) (-4x^2-3)^3(-132x^4 -27x^2 -32x)

derivative f(g) = f’(g(x)) * g’(x)

function

derivative rule

f(x) = (3x-2)(sqrt(x))

product rule

(sqrt(x))/(3x-2)

quotient

sqrt(3x-2)

chain rule

(3x+2)(sqrt(x^2-4)

product then chain rule

sqrt(x^2-4) / (3x+2)

quotient then chain rule

sqrt((3x+2)^2-4)

chain then chain

sqrt((3x+2)/(x^2-4)))

sqrt((3x+2)(x^2-4))

chain then quotient

chain then product

chain rule: f’(g(x)) * g’(x)

f = x^-2 g = 2x^2 + 3x

f’ = -2x^-3 g’ = 4x + 3

-2(2x^2+3x)^-3 * (4x + 3)

chain rule: f’(g(x)) * g’(x) f = x^1/2 g = 5x^2 + 8

f’ = 1/2x^(-1/2) g’ = 10x

(1/2)(5x^2+8)^(-1/2) * (10x) (10x)(1/2)(5x^2+8)^(-1/2) (5x)(5x^2+8)^-(1/2)

chain rule: f’(g(x)) * g’(x) f = x^3 g = 3-5x

f’ = 3x^2 g’ = -5

3(3-5x)^2 * -5 -15(3-5x)^3

chain rule: f’(g(x)) * g’(x)

f = t^-4 g = 5t^2 -2t

f’ = -4t^-5 g’ = 10t -2

-4(5t^2-2t)^-5 * (10t-2)

f = x^(3/2) g = 9x^-4 + 4x + 7

f’ = 3/2x^1/2 g’ = -36x^-5 + 4

3/2(9x^-4+4x+7)^1/2 * (-36x^-5+4)

(10x^4 - x - 4)^(5/2) f = x^(5/2) g = 10x^4 - x - 4

f’ = (5/2)x^(3/2) g’ = 40x^3 - 1

f’(g(x)) * g’ (5/2)(10x^4-x-4)^(3/2)(40x^3-1)

(5-4x)^5 f = x^5 g = 5-4x

f’ = 5x^4 g’ = -4

-20(5-4x)^4

f x^-4 g 2x^2+3x

f’ -4x^-5 g’ 4x+3

-4(2x^2+3x)^-5(4x+3)

f t^-4 g 7t^2+4t

f’ -4t^-5 g’ 14t + 4

-4(7t^2+4t)^-5 * (14t+4)

f x^1/4 g 5x^4 + 7

f’ 1/4x^(-3/4) g’ 20x

1/4(5x^4+7)^(-3/4)(20x^3) 5x^3(5x^4+7)^(-3/4)

f = 2t^-1/2 g = t^2+5

f’ = -t^(-3/2) g’ = 2t

-(t^2+5)^(-3/2)(2t) -2t(t^2+5)^-3/2

f = x^3 g = 2x^-4 - 3x + 9

f’ = 3x^2 g’ = -8x^-5 - 3

3(2x^-4-3x+9)^2 * (-8x^-5-3)

f’(x)g(x) + g’(x)f(x)

f = (2x^-4-3x+9)^3 g = 2x^3-3x+3

f’ = 3(2x^-4-3x+9)^2 * (-8x^-5-3) g’ = 6x^2 - 3

(-8x^-5-3)(2x^3-3x+3)(3)(2x^-4-3x+9)^2 + (6x^2-3)(2x^-4-3x+9)

f = x^4 g = 6x^4 + 5

f’ = 4x^3 g’ = 24x

4(6x^4+5)^3 * 24x

f’(x)g(x) + g’(x)f(x)

f = 7x g = (6x^4+5)

f’ = 7 g’ = 4(6x^4+5)^3 * 24x

(7)(6x^4+5)^4 + (24x^3)(7x)(4)(6x^4+5)^3

30(35+4t)^2 - 1700t

30(35+4(5))^2 -1700(5) 30(35+20)^2 -8500 30(55)^2 -8500 30(3025)-8500 90750-8500 82250

f = 30t^2 g = 35 +4t

f’ 60t g’ 4

60(35+4t) * 4

240(35+4t) 240(35+4t) -1700

240(35+4(8)) -1700 240(35+32) -1700 240(67) -1700 16080 - 1700 14380

f x^2 f’ = 2x

g = 8 g’ = 9

2g(x) * g’(x)

2(8) * 9 16 * 9 144

Embedded Files

5de50068bde00e12ba23b39cada207d730cfe4f1: page=1

156fd804d233529b5b763fdccaac42073bb5f434: page=2

50506173831bcf94631d1cec98f1c3a016312785: page=3

ecb49ddf8a1b33f0ca8256fcf6d20dde33128015: page=4

38c177883ff0e884664a55eacd0f0ee99767dd2b: page=5

aee96150fcc24d30fba274371a042867d23c840e: page=6

d382ad178e75830be44b10a7e8b5185a7406afd9: page=7

c9fa975f751221d1eeb98bad8215e8163b12740f: page=8

6e5742fe614ada6d693f7d3c7b7d5716e704f412: page=9

043c80953df531cc3e929437742db46e9d5ee320: page=10

c626c91391b3e3698098a4f8f2467dd2f7c00377: page=11

74d431e8fae9859c3e47844777c39f41cea08dc8: page=12

ba0b283daf947e24a4ef19e9e57c189d5d82a6f0: page=13

ba3dbae13ce5b619b4337959f40b10b71361fda1: page=14

a4b5d3045f506f2cb78ff217ad9e1f37cbaa6897: page=3

74a2e22994ac72e9bb9d8d04401dcbdca30e5b4b: page=8

bb1ae9727cd655d41a9477896f6b470491f54940: Pasted Image 20250927225829_959.png

6be363e902d3db594b7af82060bba6b7019415a2: Pasted Image 20250927230353_901.png

366f89e51eb1022ddec36ea20a903ab5a5bb6d4f: Pasted Image 20250927230900_727.png

96f0c1970808d64e8303189a1ac5cf6c3bd1647c: Pasted Image 20250927231005_778.png

5ebdd1d8c8ad303b9828b8f31d5767d9460351dd: Pasted Image 20250927231422_639.png

1108510e230aff9da64737ea85b2386c79b68bba: Pasted Image 20250928214128_815.png

f9b32b08050b0d220a4549f947a47c8916f12137: Pasted Image 20250928214433_028.png

0d2ace69343f68c634c503534a48a68cc6fc8200: Pasted Image 20250928214633_251.png

f8c2c3d8a5a2d8ff34adfceda3f8a940c383c3ec: Pasted Image 20250928214846_618.png

35cd2031546fb84954c74f5b3755bec891ee7182: Pasted Image 20250928214922_427.png

8fa7f573ab472aa96c2520b393003c84c5c3dcc5: Pasted Image 20250928221927_621.png

af9f407c98205e1f5fe39596650fe412a6a541d9: Pasted Image 20250928222425_197.png

7c5ffdaeedfe1acb37873a821339f87ed54c4074: Pasted Image 20250928225011_594.png

76af10462a061a1bd97955c745b5e5a9d16b3d6c: Pasted Image 20250928232553_045.png

c2c2a5daccdfdefc40f577f7c03a32093139a6c8: Pasted Image 20250928232743_737.png

23edd2e8a64e818ab37ca7c58b0e8438713b00ee: Pasted Image 20250928233536_055.png