⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠ You can decompress Drawing data with the command palette: ‘Decompress current Excalidraw file’. For more info check in plugin settings under ‘Saving’
Excalidraw Data
Text Elements
(x^3 + 2)^4 4(x^3+2)^3(3x^2)
u
du
u = x^2 = 1 du = 2xdc
u^3 / 3 + c
((x^2+1)^3)/3 + c
inside exponent denominator
u = x^3 + 1 du = 3x
sqrt(u) du u^(1/2) du u^3/2 / 3/2 + c 2/3u^(3/2) + c 2/3(x^3+1)^(3/2) + c
2t / (t^2+1)
u = t^2+1 du = 2tdt
1/t^2+1 * 2tdt
1/u du ln(|u|) + c ln(|t^2+1|) + c
integral : (7x^7 + 6x + 3)^4 (49x^6 + 6) dx what function when we take the derivative will give me this for u sub our 3 main strategies: inside exponent denominator
u = 7x^7 + 6x + 3 du means differential of u du = 49x^6 + 6 dx ( this is not just from up there, that is what happens when we differentiate u )
now write in terms of u and du
integral : u
u^5/5 + c (7x^7 + 6x + 3)^5 / 5 + c to check, take derivative of answer
1/5 ( 7x^7 +6x + 3)^5 +c
(1/5)(5)(7x^7+6x+3)^4
(7x^7 + 6x + 3)^4
u
du
we dont have an inside function, or an exponential function, but we do have a denominator so u is t^2 + 1
u = t^2 + 1
du is differential
du = 2t (dt)
1/(t^2+1) * 2t(dt)
1/u du = ln|u| + c ln|t^2+1| + c
inside function u = 3-4x^2 du = -8x
u^2 * du (3-4x^2)^2 * -8x(dx) ((3-4x^2)^3)/3
(3-4x^2)^2 * (-8/-8)xdx (-1/8) (3-4x^2)^2 * -8xdx
(-1/8)((3-4x^2)^3)/3 + c (-1/24)(3-4x^2)^3 + c
u = x^2 + 1 du = 2x(dx) trying to get to u^2 * du (1/2) (2x)(x^2+1)^2dx (1/2) (x^2+1)^2(2x)(dx) so now u^3/3 + c (1/2) (x^2+1)^3 /3 + c (1/6) (x^2+1)^3 + c u8
exponent
u = x^2 + 3 du = 2xdx
7 * integral ( e^(x^2+3) * xdx) 7/2 * integral ( e^(x^2+3) * 2xdx) 7/2 e^u + c
7/2e^(x^2+3) + c
integral : 5e^3x dx
u = 3x du = 3
5 * integral : e^3x * dx (5)(1/3) * integral: e^3x * 3dx (5/3) * integral: e^3x * 3dx
5/3e^(3x) + c
inside exponent denominator
inside is -3t-2
u = (-3t-2) du = -3
so
5(-3t-2)
(-3t-2)^-4 * 5dt -(5/3) integral: (-3t-2)^-4 * -3dt
u^-4 * du u^-3 / -3 * du (-5/3)((-3t-2)^-3 / -3) + C (-5/3)(-1/3)(3t-2)^-3 + c (5/9)(3t-2)^-3 + c
5/((9)(3t-2)^3) + c
6e
inside exponent denominator exponent
u = 7y du = 7
6e^7y dy e^7y * 6dy
6/7 * integral: e^7y * 7dy 6/7 * e^7y + c
1/(x+5)
inside exponent denominator denominator x+5
u = x+5 du = 1
1/u
means it is
ln|u| + c
ln|x+5| + c
inside exponent denonminator inside
u = x-8 du = 1
all good on the 1dx
(x-8)^-4 / -4 + c 1/(x-8)^4 * -(1/4) +c -1/4(x-8)^4 + c
5t^2 * e^(5t^3) inside exponent denominator denominator u = 5t^3 du = 15t
problem is e^(5t^3) * 5t
1/3 integral: e^(5t^3) * 15t
1/3 u + c 1/3 e^(5t^3) + c
e^(3x^5-7) * 15x^4 u = 3x^5 - 7 du = 15x
e^(3x^5-7) + c
inside exponent denominator denominator real problem is: 1/(1+.5x) * 350dx
u = 1 + .5x du = .5
700 * integral: 1/(1+.5x) * .5x 1/u so 700ln|u| + c 700ln|1+.5x| + c
and then other term is -15.6 so thats -15.6x
700ln|1+.5x| - 15.6x + c
700ln|1+.5(0)| - 15.6(0) + c = -70 700ln|1| +c = -70 0 + c = -70 c = - 70
700ln|1+.5x| - 15.6x - 70
5e^(4y) ( 5+4e^4y)^3 dy
inside exponent denominator
inside function
u = 5+4e^4y du = 4e^4y * 4 du = 16e
5/16 * integral: ( 5+4e^4y)^3 16e
5/16 u^3 5/16 u^4/4 + c 5/16 * 1/4 * u^4 + c 5/64u^4 + c
5/64 * (5+4e^4y)^4 + c
inside exponent denominator inside u = 3x^7 + 4x - 6 du = 21x^6 + 4
(3x^7 + 4x - 6)^8 / 8
Embedded Files
867b1ac211b77fe3e89ab511d6aec54117ebfbf5: page=1
f5c5876b0a502d1b71c62dca807b65de730d1efa: page=2
870b0501bba816893463efd67dea78a0fb86e24a: page=3
7929aef54a79341c02507e2f8465d5b6aecff9d6: page=4
c02b83f052d7cef7304806ac379f08cab9370a7c: page=5
ec7ab7cd30ed9bae6d693185f1f8335c9ef584f8: page=6
36849a96220869ed21638e1d69b92608d87eace5: page=7
fd9d8503834a0016f6713075328392e04614a18e: page=8
54b8dd23691a604f4f98c514fbbfb1ffc755f06c: page=9
5bff403b6e26bc9c5bd07c1c7cb079410ce599e2: page=10
7bf9bc1ca21c522fceb7f2717e3b37d5fc183f9f: page=11
60da01bfe6531abd542846d767800b7cc0998f9f: page=12
c1cf6705e210fa3a432f84b83233087dd3af1d41: page=13
d41043ce3adf94fbc04ee2d9ab4c5e6ad702f4b2: Pasted Image 20251208155125_317.png
8f880f7da9de12a0f5bcb6edf31722993bcd256b: Pasted Image 20251208160047_553.png
9e30a6b369072c2dd4e3b7796502e297112bb22e: Pasted Image 20251208160536_499.png
da2ee4a6f2d7e5cd2478fe7633b30971f474d131: Pasted Image 20251208173139_449.png
e9e057f9e004d46143ac25e58ac3145796b754ec: Pasted Image 20251208173502_546.png
5bb7d395997a90da1ca794fc9d3fcc5f53f73cb3: Pasted Image 20251208173625_417.png
246b5756793574516e50cac8ca6881f6e6207656: Pasted Image 20251208173715_826.png
ea627320aa198cc54486dd5a1fccc293c45e88b5: Pasted Image 20251208175256_410.png
7a45a3a7d3de9300c22839286d86a53651c00642: Pasted Image 20251208180033_274.png